
MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

 i

Joint Tactical Radio System Standard

MHAL on Chip Bus

Application Program Interface

Version: 1.1.5

26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013).

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). ii

Revision History

Version Description Last Modified Date

1.0.5 Preparation for public release

ICWG Approved

29-Jun-2010

1.1 <Draft> -Added MOCB RF Coordinator (RFC) Extension

-Update Introduction, references, and Abbreviations in

MOCB API

22-Apr-2011

1.1 <Final Draft> No further changes 01-Jun-2011

1.1.1<Draft> Delete section E.3.2 Scanning Function

Delete Figure 35:MOCB Data Bus Structure

Delete Figure 36: MOCB Waveform Initiator Functional

Block Diagram

Delete Figure 37: Tx Enabled Rx Enabled Timing

Diagram

Delete Table 7 - MOCB RFC Framework

Update Figure 34: MOCB Waveform Initiator Context

Diagram

Update Table 7 MOCB Initiator Module I/O

Update text throughout Section E. MOCB RF Chain

Coordinator Extension

Update E.3.1:Transmit Power Control Function:

MOCBRFC_TPC

Update E.3.2:Rx Gain Function: MOCBRFC_RXGAIN

03-Aug-2011

1.1.1<Final Draft> Update Section 3.1.1 Parameters

Add additional clarification to Figure 10

Remove contents from section 3.2.1.1 Module I/O

Delete text from section 3.1 Transmit Power Control

Function

Delete section E.3.2.3 Sample Interface

29-Aug-2011

1.1.1 ICWG Approved 31-Aug-2011

1.1.2<Draft> Add “nEntries” parameter to section C.3.1.3,

C.3.1.4,C.3.1.7, C.3.1.8, C.5.4.4, C.5.4.5

16-Nov-2011

1.1.2<Final Draft> Misc. Redline changes 10-Jan-2012

1.1.2 Misc. Redline changes

ICWG Approved

24-Jan-2012

1.1.3 Misc. Redline changes

ICWG Approved

18-Apr-2012

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). iii

Version Description Last Modified Date

1.1.4<Draft> Change “read” operation to “mocbRead” in Section

C.3.1.1

Change “write” operation to “mocbWrite” in Section

C.3.1.5

10-Jul-2012

1.1.4<Final Draft> No further changes 7-Aug-2012

1.1.4 No further changes

ICWG Approved

14-Aug-2012

1.1.5 Preparation for public release

ICWG Approved

26-Jun-2013

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). iv

Table of Contents

A. MOCB ... 11

B. MOCB GPP API EXTENSION .. 17

C. MOCB DSP API EXTENSION .. 60

D. MOCB FPGA API EXTENSION ... 96

E. MOCB RF CHAIN COORDINATOR (RFC) API EXTENSION 141

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). v

Table of Contents

A. MOCB ... 11

A.1 Introduction... 11

A.1.1 Overview .. 11

A.1.2 Service Layer Description .. 12

A.1.3 Referenced Documents ... 12

A.1.3.1 Government Documents .. 12

A.2 Services .. 13

A.2.1 General Assumptions ... 13

A.2.2 Logical Destination (LD) Assumptions .. 13

A.3 Service Primitives and Attributes ... 14

A.4 Interface Definitions ... 14

A.5 Data Types and Exceptions .. 14

Appendix A.A – Abbreviations and Acronyms... 15

Appendix A.B – Performance Specification .. 16

B. MOCB GPP API EXTENSION .. 17

B.1 Introduction ... 17

B.1.1 Overview .. 17

B.1.2 Service Layer Description... 17

B.1.2.1 MOCB Port Connections ... 17

B.1.3 Modes of Service .. 18

B.1.4 Service States .. 18

B.1.4.1 MOCB State Diagram .. 18

B.1.5 Referenced Documents ... 19

B.1.5.1 Government Documents ... 19

B.2 Services ... 21

B.2.1 Provide Services ... 21

B.2.2 Use Services ... 22

B.2.3 Interface Modules ... 23

B.2.3.1 MHAL::MOCB .. 23

B.2.4 Sequence Diagrams .. 23

B.3 Service Primitives and Attributes .. 24

B.3.1 MHAL::MOCB::GPPMemoryAccessConsumer .. 24

B.3.1.1 read Operation .. 24

B.3.1.2 readWait Operation .. 26

B.3.1.3 multiReadWait Operation ... 28

B.3.1.4 multiLDReadWait Operation .. 30

B.3.1.5 write Operation ... 31

B.3.1.6 writeWait Operation ... 33

B.3.1.7 multiWriteWait Operation .. 35

B.3.1.8 multiLDWriteWait Operation ... 37

B.3.1.9 modify Operation .. 38

B.3.1.10 modifyWait Operation ... 40

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). vi

B.3.1.11 configLDMap Operation .. 42

B.3.2 MHAL::MOCB::GPPEvent .. 43

B.3.2.1 registerSemaphore Operation... 43

B.3.2.2 unregisterSemaphore Operation... 45

B.3.2.3 registerEventMux Operation .. 46

B.4 IDL ... 48

B.4.1 MOCB Device IDL ... 48

B.5 UML ... 52

B.5.1 Data Types .. 53

B.5.1.1 MultiRead ... 53

B.5.1.2 MultiLDRead.. 53

B.5.1.3 MultiWrite .. 53

B.5.1.4 MultiLDWrite ... 53

B.5.1.5 Map ... 53

B.5.2 Enumerations .. 53

B.5.2.1 AddressIndexType .. 53

B.5.2.2 ErrorCodes ... 54

B.5.2.3 BitOp .. 55

B.5.3 Exceptions .. 56

B.5.4 Structures .. 56

B.5.4.1 MultiReadEntry .. 56

B.5.4.2 MultiLDReadEntry ... 56

B.5.4.3 MultiWriteEntry ... 57

B.5.4.4 MultiLDWriteEntry .. 57

B.5.4.5 MapEntry .. 58

Appendix B.A – Abbreviations and Acronyms ... 59

Appendix B.B – Performance Specification .. 59

C. MOCB DSP API EXTENSION .. 60

C.1 Introduction... 60

C.1.1 Overview .. 60

C.1.2 Service Layer Description .. 60

C.1.3 Referenced Documents ... 60

C.2 Services .. 62

C.2.1 Interface Modules ... 62

C.2.1.1 MOCB DSP Memory Access Consumer Interface Description 62

C.2.2 Sequence Diagrams .. 63

C.3 Service Primitives and Attributes ... 64

C.3.1 DSPMemoryAccessConsumer ... 64

C.3.1.1 mocbRead Operation .. 64

C.3.1.2 readWait Operation .. 66

C.3.1.3 multiReadWait Operation ... 68

C.3.1.4 multiLDReadWait Operation .. 70

C.3.1.5 mocbWrite Operation ... 72

C.3.1.6 writeWait Operation ... 74

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). vii

C.3.1.7 multiWriteWait Operation .. 76

C.3.1.8 multiLDWriteWait Operation ... 78

C.3.1.9 modify Operation .. 79

C.3.1.10 modifyWait Operation... 81

C.3.1.11 configLDMap Operation .. 83

C.3.2 DSPEvent ... 84

C.3.2.1 registerSemaphore Operation .. 84

C.3.2.2 unregisterSemaphore Operation .. 86

C.3.2.3 registerEventMux Operation .. 87

C.4 Interface Definitions ... 89

C.5 Data Types and Exceptions .. 89

C.5.1 Data Types .. 89

C.5.2 Macros .. 89

C.5.2.1 MOCBAddressIndexType .. 89

C.5.2.2 MOCBErrorCodes .. 89

C.5.2.3 MOCBBitOp .. 91

C.5.3 Exceptions .. 91

C.5.4 Structures .. 91

C.5.4.1 MOCBMemoryDescriptor .. 91

C.5.4.2 MOCBMultiReadEntry .. 92

C.5.4.3 MOCBMultiLDReadEntry ... 92

C.5.4.4 MOCBMultiWriteEntry ... 92

C.5.4.5 MOCBMultiLDWriteEntry .. 93

C.5.4.6 MOCBMapEntry .. 94

Appendix C.A – Abbreviations and Acronyms... 95

Appendix C.B – Performance Specification .. 95

D. MOCB FPGA API EXTENSION ... 96

D.1 Introduction... 96

D.1.1 Overview .. 98

D.1.2 Service Layer Description .. 98

D.1.2.1 MOCB FPGA Signals .. 98

D.1.2.2 Data and Control Flow ... 106

D.1.2.3 MOCB Configuration Package .. 108

D.1.2.4 Translation Layer ... 117

D.1.2.5 MOCB FPGA Timing .. 118

D.1.3 Referenced Documents ... 132

D.1.3.1 Government Documents .. 132

D.2 Services .. 132

D.3 Service Primitives and Attributes ... 132

D.4 Definitions .. 133

D.4.1 Entity Definitions ... 133

D.4.1.1 Target Entity Description ... 133

D.4.1.2 Initiator Entity Description... 134

D.4.2 Package definitions ... 136

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). viii

D.4.2.1 Platform Description .. 136

D.4.2.2 Waveform Description ... 138

D.5 Data Types and Exceptions .. 140

Appendix D.A – Abbreviations and Acronyms... 140

Appendix D.B – Performance Specification .. 140

Appendix D.C – Clock Specification .. 140

E. MOCB RF CHAIN COORDINATOR (RFC) API EXTENSION 141

E.1 Introduction ... 141

E.1.1 Overview ... 141

E.2 Services ... 142

E.2.1 I/F Modules ... 142

E.3 Service Primitives and Attributes .. 143

E.3.1 Transmit Power Control Function: MOCBRFC_TPC.. 143

E.3.1.1 Parameters .. 143

E.3.1.2 Events ... 144

E.3.2 Rx Gain Function: MOCBRFC_RXGAIN ... 144

E.3.2.1 Parameters .. 144

E.3.2.2 Events ... 144

E.4 Interface Definitions ... 145

E.5 Data types and Exceptions ... 145

Appendix E.A – Abbreviations and Acronyms ... 145

Appendix E.B – Performance Specification .. 145

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). ix

Lists of Figures
FIGURE 1 – LD EXAMPLE ..13

FIGURE 2 – LD OFFSET EXAMPLE ..14

FIGURE 3 – MOCB PORT DIAGRAM ...18

FIGURE 4 – MOCB STATE DIAGRAM ...19

FIGURE 5 – MOCB INTERFACE CLASS DIAGRAM ...23

FIGURE 6 – MOCB COMPONENT DIAGRAM ..52

FIGURE 7 – MOCB DSP INTERFACE DIAGRAM ...62

FIGURE 8 – WAVEFORM COMPONENT ALLOCATION EXAMPLE ..96

FIGURE 9 – MOCB BUS INTERFACE ...97

FIGURE 10 – MOCB **REQUIRED BASIC BUS INTERFACE SIGNALS ..102

FIGURE 11 – OPTIONAL BASIC SIGNALS ...103

FIGURE 12 – MOCB EXTENDED INTERFACE SIGNALS ..105

FIGURE 13 – BASIC FLOWCHART STANDARD DEFINITIONS ...106

FIGURE 14 – INITIATOR DATA AND CONTROL TRANSFER FLOW DIAGRAM107

FIGURE 15 – TARGET DATA AND CONTROL TRANSFER FLOW DIAGRAM108

FIGURE 16 – SINGLE FPGA MEMORY MAP ...110

FIGURE 17 – MULTIPLE FPGA SINGLE PLATFORM MEMORY ALLOCATION110

FIGURE 18 – MULTIPLE FPGA SPLIT PLATFORM MEMORY ALLOCATION111

FIGURE 19 – EXAMPLE MOCB INTERCONNECT TRANSLATION LAYER118

FIGURE 20 – BASIC BURST WRITE ..119

FIGURE 21 – BASIC BURST WRITE ..119

FIGURE 22 – BASIC BURST WRITE W/SIZE ...120

FIGURE 23 – BASIC BURST WRITE W/SIZE ...120

FIGURE 24 – BASIC READ ..121

FIGURE 25 – BASIC READ ..122

FIGURE 26 – BASIC READ WITH DATA ACCEPT ...123

FIGURE 27 – BASIC READ WITH RETURN DATA FLOW CONTROL ...124

FIGURE 28 – WRITE COMMAND WITH COMMAND FLOW CONTROL ...125

FIGURE 29 – WRITE COMMAND WITH FLOW CONTROL ..126

FIGURE 30 – READ/WRITE WITH ACCESS CONTROL AND LOCK ...127

FIGURE 31 – READ/WRITE WITH ACCESS CONTROL AND LOCK ...128

FIGURE 32 – WRITE/READ WITH ACCESS CONTROL AND TID ..129

FIGURE 33 – WRITE/READ WITH ACCESS CONTROL AND TIDS...130

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). x

List of Tables
TABLE 1 – MOCB PROVIDE SERVICE INTERFACE ..21

TABLE 2 – MOCB GPP EXTENSION: READ OPERATION CALLBACK ...24

TABLE 3 – MOCB GPP EXTENSION: WRITE OPERATION CALLBACK31

TABLE 4 – MOCB GPP EXTENSION: MODIFY OPERATION CALLBACK38

TABLE 5 – MOCB PERFORMANCE SPECIFICATION ...59

TABLE 6 – MOCB CLOCK SPECIFICATION ..140

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 11

A. MOCB

A.1 INTRODUCTION

This API provides information to the software developer to utilize the Modem Hardware Abstraction

Layer on Chip Bus (MOCB) interfaces in waveform target configurations.

The MOCB API provides parallel interfaces between the JTR channel modem interfaces from the

application software. The MOCB API supports communications between application components hosted

on General Purpose Processors (GPPs), Modem Digital Signal Processors (DSPs) and/or Modem Field

Programmable Gate Arrays (FPGAs).

For the purposes of this API, the following applies to processor naming conventions:

 A GPP represents a CORBA capable processor (this could be a DSP that supports CORBA).

 A DSP represents a C capable processor, but does not provide CORBA capability.

 An FPGA represents a HDL capable processor, again without CORBA capability.

From one MHAL Computational Element (CE) (i.e. GPP, FPGA, or DSP) (see MHAL API [1]), it is

possible to access other CE(s) using the interfaces defined in each MOCB API extension. The MOCB

FPGA represents the parallel address/data bus interface and is the Waveform/User interface to a memory

map. The MOCB FPGA consists of an FPGA entity library linked into a waveform build. The JTR set

interfaces are unique, but the interfaces exposed to waveform components defined in section D MOCB

FPGA API Extension. The MOCB GPP is the CORBA-based SCA CF::Device [2] interface and defined

in section B MOCB GPP API Extension. The MOCB DSP is a library of standardized components linked

into the waveform code at build time. The external interfaces and transport are JTR set defined, but the

exposed interfaces to DSP waveform components defined in section C MOCB DSP API Extension.

Additional capabilities for RF control; specifically Power Control (PC), Scanning, and Receiver Gain are

defined in section E MOCB RF Chain Coordinator (RFC) API Extension.

The MOCB API does not specify the number of CEs a JTR platform provide. The MOCB API does not

specify the platform specific transport, implementation or hardware architecture. For example, the

MOCB API is byte oriented and abstracts away the details of the hardware architecture, like a physical

interface’s transfer dimensions (8/16/32/64 bits).

The MOCB API does specify the parallel interfaces of different CEs for communication between the

waveform and hardware.

The MOCB GPP/DSP API (at this time) only supports the basic functionality of the MOCB FPGA API

Extension. APIs for extended features such as “Locked Transfers” or “Priority Transfers will be added

as required.

A.1.1 Overview

This document contains as follows:

a. Section A.1, Introduction, of this document contains the introductory material regarding the

Overview, Service Layer description, and Referenced Documents of this document.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 12

b. Section A.2, Services, provides summary of service uses.

c. Section A.3, Interface Definitions

d. Section A.5, Data Types and Exceptions

e. Appendix A.A – Abbreviations and Acronyms

f. Appendix A.B – Performance Specification

A.1.2 Service Layer Description

Not applicable

A.1.3 Referenced Documents

The following documents of the exact issue shown form a part of this specification to the extent specified

herein.

A.1.3.1 Government Documents

The following documents are part of this specification as specified herein.

A.1.3.1.1 Specifications

A.1.3.1.1.1 Federal Specifications

None

A.1.3.1.1.2 Military Specifications

None

A.1.3.1.1.3 Other Government Agency Documents

[1] JTRS Standard, “JTRS Standard MHAL API,” JTNC, Version 2.13.2

[2] JTRS Standard, “Software Communications Architecture (SCA),” JPEO, Version 2.2.2.

[3] JTRS Standard, “JTRS Standard CORBA Types,” JPEO, Version 1.0.2

[4] JTRS Standard, “Software Communications Architecture (SCA),” JPEO, Version 4.0.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 13

A.2 SERVICES

A.2.1 General Assumptions

 MOCB software operations provide feedback to the caller via error codes.

 MOCB software requires the Waveform provided source or destination buffer memory to be

aligned matching the platform.

 MOCB software requires the Waveform provided semaphore string "name" (handle for DSP) to

represent a previously registered named semaphore.

 MOCB software is byte addressable.

 MOCB SW addresses data on byte boundaries regardless of the data width.

A.2.2 Logical Destination (LD) Assumptions

 The LD is mapped to an address in the FPGA physical memory (e.g. LD_1, LD_2, LD_3)

 No size is associated with the LD to address mapping. Size is defined by the User/Waveform at

the time of the call (read, write, etc.). The platform could choose to restrict/bound the size at that

time.

 LDs can be mapped to any location in memory. Allowing LDs to overlap and possibly appear as

subsets to another LD.

In Figure 1, for example, the assumptions would imply that when a “read” (pink below) is executed for

LD_1, other LDs (LD_2, LD_3) could be mapped into the memory space being read. Likewise LD_2

could later be accessed (orange below) for only a subset of the previous “read” operation of LD_1.

Figure 1 – LD Example

The MOCB addressing is performed with an LD and an offset within the specified LD as shown in

Figure 2. The offset permits granular access to registers within a memory range assigned to a logical

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 14

destination. Figure 2 shows that an offset of 0 (zero) would point to the beginning of the logical

destination. Offsets n and m in the figure are address offsets within the logical destination X (LD_X).

The shaded area is the waveform memory map within the terminal memory map accessible by this

operation.

Figure 2 – LD Offset Example

A.3 SERVICE PRIMITIVES AND ATTRIBUTES

None

A.4 INTERFACE DEFINITIONS

None

A.5 DATA TYPES AND EXCEPTIONS

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 15

APPENDIX A.A – ABBREVIATIONS AND ACRONYMS
API Application Program Interface

CE Computational Element

CF Core Framework

CLK Clock

CORBA Common Object Request Broker Architecture

DMA Direct Memory Access

DSP Digital Signal Processor

EN Enable

EOM End of Message

FIFO First In First Out

FPGA Field Programmable Gate Array

Fx Function

GPIO General Purpose Input/Output

GPP General Purpose Processor

HDL Hardware Description Language

HW Hardware

I/O Input/Output

ICD Interface Control Document

ICWG Interface Control Working Group

IDL Interface Definition Language

IU In-Use (bit)

JPEO Joint Program Executive Office

JTNC Joint Tactical Networking Center

JTR Joint Tactical Radio

JTRS Joint Tactical Radio System

LD Logical Destination

LSB Least Significant Byte

MHz Megahertz

MOCB MHAL on Chip Bus

MSB Most Significant Byte

N/A Not Applicable

PPS Pulse Per Second

RAM Random Access Memory

RF Radio Frequency

RFC Radio Frequency Chain

Rx Receive

SCA Software Communications Architecture

SW Software

Tid Transaction Identification Number

Tx Transmit

UML Unified Modeling Language

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WF Waveform

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 16

APPENDIX A.B – PERFORMANCE SPECIFICATION
Not applicable

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 17

B. MOCB GPP API EXTENSION

B.1 INTRODUCTION

The MOCB GPP API Extension extends the MOCB base API (see section A) and supports methods and

attributes that are specific to the General Purpose Processor (GPP) Modem Hardware (HW) device

represented. This API Extension provides the ability to synchronously and asynchronously

read/write/modify data to and from a service user/provider’s shared memory. This API Extension also

provides memory mapped interfaces that provide a read (pull) capability between components. This API

Extension also includes event lines to signal to the application software that data is ready. For the

purposes of this API the following applies to processor naming conventions

 A GPP represents a CORBA capable processor (this could be a DSP that supports CORBA).

This API Extension provides information to the software developer to utilize the MOCB GPP interfaces

in the Waveform target configurations.

All accesses to shared memory via the MOCB GPP and the MOCB DSP are atomic to prevent data

corruption (this is the responsibility of the platform). A single API operation of (read/write/modify) is

defined as an access.

Note: A platform may have a 64-bit long data type (vs. 32bits) which should be considered during

waveform porting

B.1.1 Overview

This document contains as follows:

a. Section B.1, Introduction, of this document contains the introductory material regarding the

overview, and Service Layer description.

b. Section B.2, Services, provides summary of service interface uses, interface for each device

component, port connections, and sequence diagrams.

c. Section B.2, Services specifies the operations provided by the MOCB GPP.

d. Section B.4, IDL

e. Section B.5, UML

f. Appendix B.A – Abbreviations and Acronyms

g. Appendix B.B – Performance Specification

B.1.2 Service Layer Description

B.1.2.1 MOCB Port Connections

Figure 3 shows the port connections for the MOCB.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 18

Note: All port names are for reference only.

MOCB
Example::Interface

example_port

SCA "uses" port
SCA "provides" port

CORBA interface class provided

port name

non - port interface

Key:

mocb_consumer_in_port

Device User

MHAL::MOCB::

GPPMemoryAccessConsumer

mocb_event_in_port

MHAL::MOCB::

GPPEvent

Figure 3 – MOCB Port Diagram

MOCB Provides Ports Definitions

mocb_consumer_in_port is provided by the MOCB to synchronously and asynchronously

read/write/modify data through operations available.

mocb_event_in_port is provided by the MOCB to manage events.

MOCB Uses Ports Definitions

None

B.1.3 Modes of Service

Not applicable

B.1.4 Service States

B.1.4.1 MOCB State Diagram

The MOCB state model is illustrated in Figure 4. MOCB states ensure that received operations are

executed only when the MOCB is in the proper state. The five states of the MOCB are as follow:

 CONSTRUCTED - The state transitioned to upon successful creation.

 INITIALIZED - The state transitioned to upon successful initialization.

 ENABLED - The state transitioned to upon successful start.

 DISABLED - The state transitioned to upon successful stop.

 RELEASED - The state transitioned to upon successful release.

The MOCB transitions between states in response to the initialize, start, stop and releaseObject

operations.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 19

ENABLED
DISABLEDstart

stop

INITIALIZED

CONSTRUCTED

RELEASED

start stop

releaseObject

releaseObject

releaseObject

stop

releaseObject

start

initialize

Figure 4 – MOCB State Diagram

B.1.5 Referenced Documents

The following documents of the exact issue shown form a part of this specification to the extent specified

herein.

B.1.5.1 Government Documents

The following documents are part of this specification as specified herein.

B.1.5.1.1 Specifications

B.1.5.1.1.1 Federal Specifications

None

B.1.5.1.1.2 Military Specifications

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 20

B.1.5.1.1.3 Other Government Agency Documents

See section A.1.3.1.1.3.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 21

B.2 SERVICES

The MOCB CORBA-compliant API separates platform interfaces from waveform interfaces.

B.2.1 Provide Services

The MOCB provide service consists of the following service ports, interfaces, and primitives, which can be called by other client components.

Table 1 – MOCB Provide Service Interface

Service Group (Port

Name)
Service (Interface Provided) Primitives (Provided)

Parameter Name or

Return Value
Valid Range

mocb_consumer_in_port MHAL::MOCB::GPPMemory

AccessConsumer

read See section B.3.1.1 See section B.3.1.1

readWait See section B.3.1.2 See section B.3.1.2

multiReadWait See section B.3.1.3 See section B.3.1.3

multiLDReadWait See section B.3.1.4 See section B.3.1.4

write See section B.3.1.5 See section B.3.1.5

writeWait See section B.3.1.6 See section B.3.1.6

multiWriteWait See section B.3.1.7 See section B.3.1.7

multiLDWriteWait See section B.3.1.8 See section B.3.1.8

modify See section B.3.1.9 See section B.3.1.9

modifyWait See section B.3.1.10 See section B.3.1.10

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 22

Service Group (Port

Name)
Service (Interface Provided) Primitives (Provided)

Parameter Name or

Return Value
Valid Range

configLDMap See section B.3.1.11 See section B.3.1.11

mocb_event_in_port MHAL::MOCB::GPPEvent registerSemaphore See section B.3.2 See section B.3.2

unregisterSemaphore See section B.3.2.2 See section B.3.2.2

registerEventMux See section B.3.2.3 See section B.3.2.3

B.2.2 Use Services

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 23

B.2.3 Interface Modules

B.2.3.1 MHAL::MOCB

Figure 5 – MOCB Interface Class Diagram

B.2.3.1.1 GPPMemoryAccessConsumer Interface Description

The interface of the GPPMemoryAccessConsumer is depicted in Figure 5. It provides the ability to

synchronously and asynchronously read/write/modify data to and from a service user/provider’s shared

memory.

B.2.3.1.2 GPPEvent Interface Description

The interface design of the GPPEvent illustrated in Figure 5 provides the ability to manage events.

B.2.4 Sequence Diagrams

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 24

B.3 SERVICE PRIMITIVES AND ATTRIBUTES

To enhance the readability of this API document and to avoid duplication of data, the type definitions of

all structured types (i.e., structures, typedefs, exceptions, and enumerations) used by the Service

Primitives and Attributes have been co-located in section B.5 UML.

B.3.1 MHAL::MOCB::GPPMemoryAccessConsumer

B.3.1.1 read Operation

This operation provides the ability to read data from shared memory. This operation is non-blocking and

returns the data via an MHAL message (Table 2) to the provided “callbackLD”. This utilizes the

MHALPacketConsumer interface defined in the MHAL GPP API Extension [1].

To read 32 bits, 4 octets will be used. For example, for a terminal with a 32-bit bus, the 4 octets will be

used in one transaction, for a terminal with a 16-bit bus, 2 transactions will occur each using 2 octets.

Note: The callback message (10 bytes) consists of an MHAL header with the callbackLD, a payload of 6

bytes representing the ErrorCodes for this operation and the data read.

Table 2 – MOCB GPP Extension: Read Operation Callback

<MHAL Header > <Payload >

LD Length

callbackLD 16 nByte + 10 16 ErrorCode 32 Read Data nByte

B.3.1.1.1 Synopsis

 oneway void read (

 in unsigned short LD,

 in unsigned long offset,

 in unsigned short nByte,

 in unsigned short callbackLD

);

B.3.1.1.2 Parameters

Parameter

Name

Description Type Units Valid Range

LD The logical destination

for the message.

unsigned short Logical

Destination

ID

0 – 32767

offset Address offset from base

address assigned to a

logical destination (LD).

unsigned long Offset from

Logical

Destination

Not Specified

nByte The number of bytes to

be read.

unsigned short N/A 0 – 65525

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 25

Parameter

Name

Description Type Units Valid Range

callbackLD The logical destination

for the callback message.

unsigned short Logical

Destination

ID

0 – 32767

B.3.1.1.3 State

ENABLED CF::Device::operationalState.

B.3.1.1.4 New State

This operation does not cause a state change.

B.3.1.1.5 Return Value

None

B.3.1.1.6 Originator

Service Provider

B.3.1.1.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 26

B.3.1.2 readWait Operation

This is a blocking operation and permits reading data from the application memory map. The

user/waveform is responsible for destroying the sequence allocated during the readWait() call by the

MOCB.

Note: Zero for both sec and nsec would indicate to wait indefinitely.

B.3.1.2.1 Synopsis

 ErrorCodes readWait (

 in unsigned long sec,

 in unsigned long nsec,

 in unsigned short LD,

 in unsigned long offset,

 in unsigned short nByte,

 out JTRS::OctetSequence buf

);

B.3.1.2.2 Parameters

Parameter

Name

Description Type Units Valid Range

sec Integer seconds of

time to wait.

unsigned long Seconds 0 to 2147483647

nsec Nanoseconds of time

to wait.

unsigned long Nanoseconds 0 to 999999999

LD Logical destination

of the message.

unsigned short Logical

Destination ID

0 – 32767

offset Address offset from

base address

assigned to a logical

destination (LD).

unsigned long Offset from

Logical

Destination

Not Specified

nByte Number of bytes to

read.

unsigned short N/A 0 – 65531

buf The returned data. JTRS::OctetSequence

(See JTRS CORBA

Types [3])

N/A N/A

B.3.1.2.3 State

ENABLED CF::Device::operationalState.

B.3.1.2.4 New State

This operation does not cause a state change.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 27

B.3.1.2.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

ErrorCodes N/A See section

B.5.2.2

B.3.1.2.6 Originator

Service Provider

B.3.1.2.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 28

B.3.1.3 multiReadWait Operation

This operation provides the ability for the application to read data from offsets within the same logical

destination

B.3.1.3.1 Synopsis

 ErrorCodes multiReadWait (

 in unsigned long sec,

 in unsigned long nsec,

 in unsigned short LD,

 in MultiRead addrList,

 out JTRS::OctetSequence buf

);

B.3.1.3.2 Parameters

Parameter

Name

Description Type Units Valid Range

sec Integer seconds of

time to wait.

unsigned long Seconds 0 to 2147483647

nsec Nanoseconds of

time to wait.

unsigned long Nanoseconds 0 to 999999999

LD Logical destination

of the message.

unsigned short Logical

Destination ID

0 – 32767

addrList Sequence of offsets,

and number of bytes

to read.

MultiRead

(See section B.5.1.1)

N/A N/A

buf Returned data. JTRS::OctetSequence

(See JTRS CORBA

Types [3])

N/A N/A

B.3.1.3.3 State

ENABLED CF::Device::operationalState.

B.3.1.3.4 New State

This operation does not cause a state change.

B.3.1.3.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

ErrorCodes N/A See section

B.5.2.2

B.3.1.3.6 Originator

Service Provider.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 29

B.3.1.3.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 30

B.3.1.4 multiLDReadWait Operation

This operation provides the ability for the application to read data from offsets from multiple logical

destinations.

B.3.1.4.1 Synopsis

 ErrorCodes multiLDReadWait (

 in unsigned long sec,

 in unsigned long nsec,

 in MultiLDRead addrList,

 out JTRS::OctetSequence buf

);

B.3.1.4.2 Parameters

Parameter

Name

Description Type Units Valid Range

sec Integer seconds to

wait.

unsigned long Seconds 0 to 2147483647

nsec Nanoseconds of

time to wait.

unsigned long Nanoseconds 0 to 999999999

addrList A sequence of LDs,

offsets, and number

of bytes to read.

MultiLDRead

(See section B.5.1.2)

N/A N/A

buf The data read. JTRS::OctetSequence

(See JTRS CORBA

Types [3])

N/A N/A

B.3.1.4.3 State

ENABLED CF::Device::operationalState.

B.3.1.4.4 New State

This operation does not cause a state change.

B.3.1.4.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

ErrorCodes N/A See section

B.5.2.2

B.3.1.4.6 Originator

Service Provider.

B.3.1.4.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 31

B.3.1.5 write Operation

This operation writes data to shared memory. The operation is non-blocking and returns a confirmation

via an MHAL message (Table 3) to the provided “callbackLD”. This utilizes the

MHALPacketConsumer interface defined in the MHAL GPP API Extension [1].

Four octets are used to write 32 bits. As an example, a terminal with a 32-bit bus will transmit 4 octets

one transaction, whereas a terminal with a 16-bit bus will execute 2 transactions with 2 octets each.

A “non-blocking” write() with a “callbackLD” of “NOCALLBACK” disables the confirmation callback

for that instance. “NOCALLBACK” is defined as a symbolic LD reference just like “RFCHAIN” and is

assigned a value by the platform.

Note: The callback message (8 bytes) consists of an MHAL header with the callbackLD and a payload of

4 bytes containing the ErrorCodes for this operation.

Table 3 – MOCB GPP Extension: Write Operation Callback

<MHAL Header > <Payload >

LD Length

callbackLD 16 8 16 ErrorCode 32

B.3.1.5.1 Synopsis

 oneway void write (

 in unsigned short LD,

 in unsigned long offset,

 in JTRS::OctetSequence buf,

 in unsigned short callbackLD

);

B.3.1.5.2 Parameters

Parameter

Name

Description Type Units Valid Range

LD Logical destination

for the message

unsigned short Logical

Destination

ID

0 – 32767

offset Address offset from

base address assigned

to a logical destination

(LD).

unsigned long Offset from

Logical

Destination

Not Specified

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 32

Parameter

Name

Description Type Units Valid Range

buf The data to be written.

Note: The length of

the sequence is used

as the size of the

transaction.

JTRS::OctetSequence

(See JTRS CORBA

Types [3])

N/A N/A

callbackLD The logical

destination for the

callback message

unsigned short Logical

Destination

ID

0 – 32767

B.3.1.5.3 State

ENABLED CF::Device::operationalState.

B.3.1.5.4 New State

This operation does not cause a state change.

B.3.1.5.5 Return Value

None

B.3.1.5.6 Originator

Service Provider

B.3.1.5.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 33

B.3.1.6 writeWait Operation

This operation is blocking and provides the ability to write data to shared memory.

Note: Zero for both sec and nsec indicates to wait indefinitely.

B.3.1.6.1 Synopsis

 ErrorCodes writeWait (

 in unsigned long sec,

 in unsigned long nsec,

 in unsigned short LD,

 in unsigned long offset,

 in JTRS::OctetSequence buf

);

B.3.1.6.2 Parameters

Parameter

Name

Description Type Units Valid Range

sec Integer seconds of

time to wait.

unsigned long Seconds 0 to 2147483647

nsec Nanoseconds of time

to wait.

unsigned long Nanoseconds 0 to 999999999

LD The logical

destination for the

message

unsigned short Logical

Destination ID

0 – 32767

offset Address offset from

base address

assigned to a logical

destination (LD).

unsigned long Offset from

Logical

Destination

Not Specified

buf The data to be

written.

Note: The length of

the sequence is used

as the size of the

transaction.

JTRS::OctetSequence

(See JTRS CORBA

Types [3])

N/A N/A

B.3.1.6.3 State

ENABLED CF::Device::operationalState.

B.3.1.6.4 New State

This operation does not cause a state change.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 34

B.3.1.6.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

ErrorCodes N/A See section

B.5.2.2

B.3.1.6.6 Originator

Service Provider

B.3.1.6.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 35

B.3.1.7 multiWriteWait Operation

This operation provides the ability for the application to write data to offsets within same logical

destination.

B.3.1.7.1 Synopsis

 ErrorCodes multiWriteWait (

 in unsigned long sec,

 in unsigned long nsec,

 in unsigned short LD,

 in MultiWrite addrValPairs

);

B.3.1.7.2 Parameters

Parameter

Name

Description Type Units Valid Range

sec Integer seconds of

time to wait.

unsigned long Seconds 0 to 2147483647

nsec Nanoseconds of

time to wait.

unsigned long Nanoseconds 0 to 999999999

LD The logical

destination for the

message.

unsigned short Logical

Destination ID

0 – 32767

addrValPairs A sequence of

offsets, and the

buffers of data to be

written.

MultiWrite

(See section B.5.1.3)

N/A N/A

B.3.1.7.3 State

ENABLED CF::Device::operationalState.

B.3.1.7.4 New State

This operation does not cause a state change.

B.3.1.7.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

ErrorCodes N/A See section

B.5.2.2

B.3.1.7.6 Originator

Service Provider.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 36

B.3.1.7.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 37

B.3.1.8 multiLDWriteWait Operation

This operation provides the ability for the application to write data to offsets within multiple logical

destinations.

B.3.1.8.1 Synopsis

 ErrorCodes multiLDWriteWait (

 in unsigned long sec,

 in unsigned long nsec,

 in MultiLDWrite addrValPairs

);

B.3.1.8.2 Parameters

Parameter

Name

Description Type Units Valid Range

sec Integer seconds of

time to wait.

unsigned long Seconds 0 to 2147483647

nsec Nanoseconds of

time to wait.

unsigned long Nanoseconds 0 to 999999999

addrValPairs A sequence of LDs,

offsets, and the

buffers of data to be

written.

MultiLDWrite

(See section B.5.4.4)
N/A N/A

B.3.1.8.3 State

ENABLED CF::Device::operationalState.

B.3.1.8.4 New State

This operation does not cause a state change.

B.3.1.8.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

ErrorCodes N/A See section

B.5.2.2

B.3.1.8.6 Originator

Service Provider

B.3.1.8.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 38

B.3.1.9 modify Operation

This operation modifies data in shared memory. The operation is non-blocking and returns a

confirmation via an MHAL message to the provided “callbackLD”. This utilizes the

MHALPacketConsumer interface defined in the MHAL GPP API Extension [1].

Four octets are used to write 32 bits. As an example, a terminal with a 32-bit bus will transmit 4 octets

one transaction, whereas a terminal with a 16-bit bus will execute 2 transactions with 2 octets each.

A modify() with a “callbackLD” of NOCALLBACK disables the confirmation callback for that instance.

NOCALLBACK is defined as a symbolic LD reference just like RFCHAIN and is assigned a value by

the platform.

Note: The callback message (8 bytes) consists of an MHAL header with the callbackLD and a payload of

4 bytes representing the ErrorCodes for this operation.

Table 4 – MOCB GPP Extension: Modify Operation Callback

<MHAL Header > <Payload >

LD Length

callbackLD 16 8 16 ErrorCode 32

B.3.1.9.1 Synopsis

 oneway void modify (

 in unsigned short LD,

 in unsigned long offset,

 in JTRS::OctetSequence buf,

 in BitOp bitOperation,

 in unsigned short callbackLD

);

B.3.1.9.2 Parameters

Parameter

Name

Description Type Units Valid Range

LD The logical

destination for the

message

unsigned short Logical

Destination

ID

0 – 32767

offset Address offset from

base address assigned

to a logical destination

(LD).

unsigned long Offset from

Logical

Destination

Not Specified

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 39

Parameter

Name

Description Type Units Valid Range

buf The data to be

modified.

Note: The length of

the sequence is used

as the size of the

transaction.

JTRS::OctetSequence

(See JTRS CORBA

Types [3])

N/A N/A

bitOperation The bitwise operation

to be performed.

BitOp N/A See section B.5.2.3

callbackLD The logical

destination for the

callback message

unsigned short Logical

Destination

ID

0 – 32767

B.3.1.9.3 State

ENABLED CF::Device::operationalState.

B.3.1.9.4 New State

This operation does not cause a state change.

B.3.1.9.5 Return Value

None

B.3.1.9.6 Originator

Service Provider

B.3.1.9.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 40

B.3.1.10 modifyWait Operation

This operation is blocking and provides the ability to modify data in shared memory.

Note: Zero for both sec and nsec indicate to wait indefinitely.

B.3.1.10.1 Synopsis

 ErrorCodes modifyWait (

 in unsigned long sec,

 in unsigned long nsec,

 in unsigned short LD,

 in unsigned long offset,

 in JTRS::OctetSequence buf,

 in BitOp bitOperation

);

B.3.1.10.2 Parameters

Parameter

Name

Description Type Units Valid Range

sec Integer seconds of

time to wait.

unsigned long Seconds 0 to 2147483647

nsec Nanoseconds of

time to wait.

unsigned long Nanoseconds 0 to 999999999

LD The logical

destination for the

message

unsigned short Logical

Destination ID

0 – 32767

offset Address offset

from base address

assigned to a

logical destination

(LD).

unsigned long Offset from

Logical

Destination

Not Specified

buf The data to be

operated on.

Note: The length of

the sequence is

used as the size of

the transaction.

JTRS::OctetSequence

(See JTRS CORBA

Types [3])

N/A N/A

bitOperation The bitwise

operation to be

performed.

BitOp N/A See section B.5.2.3

B.3.1.10.3 State

ENABLED CF::Device::operationalState.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 41

B.3.1.10.4 New State

This operation does not cause a state change.

B.3.1.10.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

ErrorCodes N/A See section

B.5.2.2

B.3.1.10.6 Originator

Service Provider

B.3.1.10.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 42

B.3.1.11 configLDMap Operation

This operation maps logical destinations to a starting address in the waveform memory map. The

terminal software has knowledge of which portion of its memory map are for the waveform.

The “addressWidth” is used to determine the space reserved for the address component of the LD &

Address pair in the payload parameter.

B.3.1.11.1 Synopsis

 ErrorCodes configLDMap (

 in Map configMap

);

B.3.1.11.2 Parameters

Parameter

Name

Description Type Units Valid Range

configMap Mapping of LDs to

addresses

Map N/A See section B.5.1.1

B.3.1.11.3 State

ENABLED CF::Device::operationalState.

B.3.1.11.4 New State

This operation does not cause a state change.

B.3.1.11.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

ErrorCodes N/A See section

B.5.2.2

B.3.1.11.6 Originator

Service Provider

B.3.1.11.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 43

B.3.2 MHAL::MOCB::GPPEvent

B.3.2.1 registerSemaphore Operation

This operation registers a semaphore managed (created and destroyed) by the waveform software. The

waveform calls this operation for each relevant subEvent represented by a bit in the event mux

register**.

The semaphore is posted by the MOCB software when the specified MOCB event occurs. This event is

known by the waveform software and the waveform firmware (e.g., an FPGA event line). The waveform

hardware event line(s) is(are) mapped to terminal specific hardware (e.g., a GPIO line(s)) during

waveform porting. The terminal software has knowledge of which terminal lines are connected to

waveform hardware lines, and upon assertion of that discrete, the semaphore is posted.

The MOCB software provides event triggering to waveform software on a per bit basis within the event

mux register.

The waveform firmware is responsible to clear all the subEvent bit(s) in the mux register after detecting

the MOCB software reading the mux register (if more synchronization controls are required, the

waveform may implement an independent clear/feedback register that can be written by waveform

software via the MOCB write() or writeWait() operations)

MOCB software will post all subEvents present when the mux register is read after the MOCB event line

is signaled.

** Note: The MOCB firmware provides a minimum of (1…n) event line(s) for waveform use. The

waveform firmware provides one event mux register(1..n bytes) for each MOCB event line.

B.3.2.1.1 Synopsis

 ErrorCodes registerSemaphore (

 in unsigned short eventId,

 in unsigned short subEventId,

 in string name

);

B.3.2.1.2 Parameters

Parameter

Name

Description Type Units Valid Range

eventId The event Identifier

associated with the

semaphore.

This represents the

event provided to

waveform software

from the MOCB

FPGA interface.

unsigned short N/A 0 – 32767

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 44

Parameter

Name

Description Type Units Valid Range

subEventId Associated with the

bit position in the

waveform provided

mux register.

unsigned short N/A 0 – 32767

name Name of the

semaphore created by

the application

string N/A N/A

B.3.2.1.3 State

ENABLED CF::Device::operationalState.

B.3.2.1.4 New State

This operation does not cause a state change.

B.3.2.1.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

ErrorCodes N/A See section

B.5.2.2

B.3.2.1.6 Originator

Service Provider

B.3.2.1.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 45

B.3.2.2 unregisterSemaphore Operation

Un-registers a previously registered semaphore upon a MOCB event. The only parameter needed to un-

register a semaphore is the name.

B.3.2.2.1 Synopsis

 ErrorCodes unregisterSemaphore (

 in string name

);

B.3.2.2.2 Parameters

Parameter

Name

Description Type Units Valid Range

name Name of the

semaphore created by

the application

string N/A N/A

B.3.2.2.3 State

ENABLED CF::Device::operationalState.

B.3.2.2.4 New State

This operation does not cause a state change.

B.3.2.2.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

ErrorCodes N/A See section

B.5.2.2

B.3.2.2.6 Originator

Service Provider

B.3.2.2.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 46

B.3.2.3 registerEventMux Operation

This operation assigns an event to a mux register of subEvents the waveform will use. The waveform

calls this operation on each MOCB event line.

B.3.2.3.1 Synopsis

 ErrorCodes registerEventMux(

 in unsigned short eventId,

 in unsigned short LD,

 in unsigned long offset,

 in unsigned short nByte

);

B.3.2.3.2 Parameters

Parameter

Name

Description Type Units Valid Range

eventId The event Identifier

that represents the

event discrete

provided to

waveform software

from the MOCB

FPGA interface (i.e.

MOCB firmware)

unsigned short N/A 0 – 32767

LD The logical

destination for the

message.

This is the location in

the waveform

memory space where

the platform reads

“nbytes” of event

mux register when

“eventId” occurs

unsigned short Logical

Destination

ID

0 – 32767

offset Address offset from

base address

assigned to a logical

destination (LD).

unsigned long Offset from

Logical

Destination

Not Specified

nByte The number of bytes

to be read.

unsigned short N/A 0 – 65525

B.3.2.3.3 State

ENABLED CF::Device::operationalState.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 47

B.3.2.3.4 New State

This operation does not cause a state change.

B.3.2.3.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

ErrorCodes N/A See section

B.5.2.2

B.3.2.3.6 Originator

Service Provider

B.3.2.3.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 48

B.4 IDL

B.4.1 MOCB Device IDL
/*

** MocbDevice.idl

*/

#ifndef __MOCBDEVICE_DEFINED

#define __MOCBDEVICE_DEFINED

#ifndef __JTRSCORBATYPES_DEFINED

#include "JtrsCorbaTypes.idl"

#endif

module MHAL {

module MOCB {

 struct MultiLDReadEntry {

 unsigned short LD;

 unsigned long offset;

 unsigned short nByte;

 };

 typedef sequence<MultiLDReadEntry> MultiLDRead;

 struct MultiReadEntry {

 unsigned long offset;

 unsigned short nByte;

 };

 typedef sequence<MultiReadEntry> MultiRead;

 struct MultiLDWriteEntry {

 unsigned short LD;

 unsigned long offset;

 JTRS::OctetSequence buf;

 };

 typedef sequence<MultiLDWriteEntry> MultiLDWrite;

 struct MultiWriteEntry {

 unsigned long offset;

 JTRS::OctetSequence buf;

 };

 typedef sequence<MultiWriteEntry> MultiWrite;

 typedef JTRS::ExtEnum AddressIndexType;

 const AddressIndexType CONSTANT = 0;

 const AddressIndexType INCREMENT= 1;

 const AddressIndexType DECREMENT = 2;

 typedef short ErrorCodes;

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 49

 const ErrorCodes SUCCESSFUL = 0;

 const ErrorCodes INV_MEM_ACCESS = -1;

 const ErrorCodes INV_LD_OR_ADDR = -2;

 const ErrorCodes SRC_MEM_NOT_ALIGNED = -3;

 const ErrorCodes DST_MEM_NOT_ALIGNED = -4;

 const ErrorCodes INV_EVENT_ID = -5;

 const ErrorCodes INV_SEMAPHORE_NAME = -6;

 const ErrorCodes INV_TIME = -7;

 const ErrorCodes INV_SUBEVENT = -8;

 const ErrorCodes TIMER_EXPIRED = -9;

 const ErrorCodes INV_SIZE = -10;

 typedef JTRS::ExtEnum BitOp;

 const BitOp AND = 0;

 const BitOp OR = 1;

 const BitOp XOR = 2;

 const BitOp NAND = 3;

 const BitOp NOR = 4;

 struct MapEntry {

 unsigned short LD; // the logical destination

 unsigned long address; // the address this LD maps to

 AddressIndexType indexType; // the index type for this

address

 };

 typedef sequence<MapEntry> Map;

 interface GPPMemoryAccessConsumer {

 oneway void read (

 in unsigned short LD,

 in unsigned long offset,

 in unsigned short nByte,

 in unsigned short callbackLD

);

 ErrorCodes readWait (

 in unsigned long sec,

 in unsigned long nsec,

 in unsigned short LD,

 in unsigned long offset,

 in unsigned short nByte,

 out JTRS::OctetSequence buf

);

 ErrorCodes multiReadWait (

 in unsigned long sec,

 in unsigned long nsec,

 in unsigned short LD,

 in MultiRead addrList,

 out JTRS::OctetSequence buf

);

 ErrorCodes multiLDReadWait (

 in unsigned long sec,

 in unsigned long nsec,

 in MultiLDRead addrList,

 out JTRS::OctetSequence buf

);

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 50

 oneway void write (

 in unsigned short LD,

 in unsigned long offset,

 in JTRS::OctetSequence buf,

 in unsigned short callbackLD

);

 ErrorCodes writeWait (

 in unsigned long sec,

 in unsigned long nsec,

 in unsigned short LD,

 in unsigned long offset,

 in JTRS::OctetSequence buf

);

 ErrorCodes multiWriteWait (

 in unsigned long sec,

 in unsigned long nsec,

 in unsigned short LD,

 in MultiWrite addrValPairs

);

 ErrorCodes multiLDWriteWait (

 in unsigned long sec,

 in unsigned long nsec,

 in MultiLDWrite addrValPairs

);

 oneway void modify (

 in unsigned short LD,

 in unsigned long offset,

 in JTRS::OctetSequence buf,

 in BitOp bitOperation,

 in unsigned short callbackLD

);

 ErrorCodes modifyWait (

 in unsigned long sec,

 in unsigned long nsec,

 in unsigned short LD,

 in unsigned long offset,

 in JTRS::OctetSequence buf,

 in BitOp bitOperation

);

 ErrorCodes configLDMap (

 in Map configMap

);

 };

 interface GPPEvent {

 ErrorCodes registerSemaphore (

 in unsigned short eventId,

 in unsigned short subEventId,

 in string name

);

 ErrorCodes unregisterSemaphore (

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 51

 in string name

);

 ErrorCodes registerEventMux(

 in unsigned short eventId,

 in unsigned short LD,

 in unsigned long offset,

 in unsigned short nByte

);

 };

};

};

#endif

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 52

B.5 UML

This section contains the Device component UML diagram and the definitions of all data types

referenced (directly or indirectly) by section Service Primitives and Attributes.

Figure 6 – MOCB Component Diagram

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 53

B.5.1 Data Types

B.5.1.1 MultiRead

This sequence type definition provides pairings of offsets, and number of bytes to read (see section

B.5.4.1).

 typedef sequence<MultiReadEntry> MultiRead;

B.5.1.2 MultiLDRead

This sequence type definition provides pairings of LDs, offsets, and number of bytes to read (see section

B.5.4.2).

 typedef sequence<MultiLDReadEntry> MultiLDRead;

B.5.1.3 MultiWrite

This sequence type definition provides pairings of offsets, and buffers of data to be written (see section

B.5.4.3).

 typedef sequence<MultiWriteEntry> MultiWrite;

B.5.1.4 MultiLDWrite

This sequence type definition provides pairings of LDs, offsets, and buffers of data to be written (see

section B.5.4.4).

 typedef sequence<MultiLDWriteEntry> MultiLDWrite;

B.5.1.5 Map

This sequence type definition provides a list of the LD/address mappings (see section B.5.4.5).

 typedef sequence<MapEntry> Map;

B.5.2 Enumerations

B.5.2.1 AddressIndexType

This enumeration definition enumerates the address indexing that can be performed.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 54

 typedef JTRS::ExtEnum AddressIndexType;

 const AddressIndexType CONSTANT = 0;

 const AddressIndexType INCREMENT= 1;

 const AddressIndexType DECREMENT = 2;

JTRS::ExtEnum Element Value Description

AddressIndexType CONSTANT 0 Constant address indexing

INCREMENT 1 Increment address indexing

DECREMENT 2 Decrement address indexing

B.5.2.2 ErrorCodes

This type definition is a JTRS extension enumeration (see JTRS CORBA Types [3]). It enumerates the

error codes supported by the MOCB.

 typedef short ErrorCodes;

 const ErrorCodes SUCCESSFUL = 0;

 const ErrorCodes INV_MEM_ACCESS = -1;

 const ErrorCodes INV_LD_OR_ADDR = -2;

 const ErrorCodes SRC_MEM_NOT_ALIGNED = -3;

 const ErrorCodes DST_MEM_NOT_ALIGNED = -4;

 const ErrorCodes INV_EVENT_ID = -5;

 const ErrorCodes INV_SEMAPHORE_NAME = -6;

 const ErrorCodes INV_TIME = -7;

 const ErrorCodes INV_SUBEVENT = -8;

 const ErrorCodes TIMER_EXPIRED = -9;

 const ErrorCodes INV_SIZE = -10;

short Element Value Description

ErrorCodes SUCCESSFUL 0 Successful.

The transfer was successfully

queue/executed

INV_MEM_ACCESS -1 Invalid Memory Access.

The memory location addressed

was outside the platform's valid

range.

INV_LD_OR_ADDR -2 Invalid LD / Address.

The LD does not have a valid

address map entry.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 55

short Element Value Description

SRC_MEM_NOT_ALIGNED -3 Source Memory Not Aligned.

The (source) location where the

data is originally stored, is not

located on the processors

defined address boundary for an

efficient memory transfer. i.e.

An error would occur if

addressing the second byte in a

32-bit word, as the start of a

word transfer.

DST_MEM_NOT_ALIGNED -4 Destination Memory Not

Aligned.

The location where the data will

be stored is not located on that

processors defined addressable

boundary for an efficient

memory transfer. i.e. An error

would occur if addressing the

second byte in a 32-bit word, as

the start of a sequence of word

transfer.

INV_EVENT_ID -5 Invalid EventID.

The event ID does not

correspond to a valid MOCB

event line.

INV_SEMAPHORE_NAME -6 Invalid Semaphore Name.

The event string has not been

mapped to a subEventId.

INV_TIME -7 Invalid Time (i.e. sec or

nsec).

The time specified is outside the

valid range.

INV_SUBEVENT -8 Invalid SubEventID.

The subEventId is outside the

bounds of the mux register size.

TIMER_EXPIRED -9 Timer expired.

The time specified expired prior

to completion of the operation.

INV_SIZE -10 Invalid size.

The number of bytes requested

exceeds the limit that can be

returned via the MHAL

callback.

B.5.2.3 BitOp

This type definition is a JTRS extension enumeration (see JTRS CORBA Types [3]). It enumerates the

bit-wise operations supported by the MOCB.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 56

 typedef JTRS::ExtEnum BitOp;

 const BitOp AND = 0;

 const BitOp OR = 1;

 const BitOp XOR = 2;

 const BitOp NAND = 3;

 const BitOp NOR = 4;

JTRS::ExtEnum Element Value Description

BitOp AND 0 Logical AND
OR 1 Logical OR

XOR 2 Logical XOR
NAND 3 Logical NAND
NOR 4 Logical NOR

B.5.3 Exceptions

None

B.5.4 Structures

B.5.4.1 MultiReadEntry

This structure defines the pairing between an offset and number of bytes to read.

 struct MultiReadEntry {

 unsigned long offset;

 unsigned short nByte;

 };

Struct Attributes Type Valid Range Description

MultiReadEntry offset unsigned long Not Specified Address offset

from base

address

assigned to a

logical

destination

(LD).

nByte unsigned short 0 – 65531 The number of

bytes to read.

B.5.4.2 MultiLDReadEntry

This structure defines the pairing between an offset and number of bytes to read.

 struct MultiLDReadEntry {

 unsigned short LD;

 unsigned long offset;

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 57

 unsigned short nByte;

 };

Struct Attributes Type Valid Range Description

MultiLDReadEntry LD unsigned short 0 – 32767 The logical

destination for

the message.

offset unsigned long Not Specified Address offset

from base

address

assigned to a

logical

destination

(LD).

nByte unsigned short 0 – 65531 The number of

bytes to read.

B.5.4.3 MultiWriteEntry

This structure defines the pairing between an offset and buffer of data to be written.

 struct MultiWriteEntry {

 unsigned long offset;

 JTRS::OctetSequence buf;

 };

Struct Attributes Type Valid Range Description

MultiWriteEntry offset unsigned long Not Specified Address offset from

base address

assigned to a logical

destination (LD).

buf JTRS::OctetSequence

(See JTRS CORBA

Types [3])

N/A The data to be

written.

B.5.4.4 MultiLDWriteEntry

This structure defines the pairing between an LD, offset and buffer of data to be written.

 struct MultiLDWriteEntry {

 unsigned short LD;

 unsigned long offset;

 JTRS::OctetSequence buf;

 };

Struct Attributes Type Valid Range Description

MultiLDWriteEntry LD unsigned short 0 – 32767 The logical

destination for the

message.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 58

Struct Attributes Type Valid Range Description

offset unsigned long Not Specified Address offset from

base address

assigned to a logical

destination (LD).

buf JTRS::OctetSequence

(See JTRS CORBA

Types [3])

N/A The data to be

written.

B.5.4.5 MapEntry

This structure defines the mapping between a logical destination and address in memory.

 struct MapEntry {

 unsigned short LD; // the logical destination

 unsigned long address; // the address this LD maps to

 AddressIndexType indexType; // the index type for this address

 };

Struct Attributes Type Valid Range Description

MapEntry LD unsigned short 0 – 32767 The logical

destination for the

message.

address unsigned long Not Specified The address the

LD maps to.

indexType AddressIndexType See section B.5.2.1 The index type

for this address.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 59

APPENDIX B.A – ABBREVIATIONS AND ACRONYMS
See section Appendix A.A.

APPENDIX B.B – PERFORMANCE SPECIFICATION
Table 5 provides a template for the generic performance specification for the MOCB GPP API Extension

documented in the waveform or user using the interface. This performance specification corresponds to

the port diagram in Figure 3.

Table 5 – MOCB Performance Specification

Specification Description Units Value

Worst Case Command Execution Time

for mocb_consumer_in_port

* * *

Note: (*) These values should be filled in by individual developers.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 60

C. MOCB DSP API EXTENSION

C.1 INTRODUCTION

The MOCB DSP API Extension extends the MHAL DSP API Extension [1] and consists of a collection of

C function specifications that provides the ability to synchronously (i.e. blocking) and asynchronously

(i.e. non-blocking) read/write/modify data to and from a service user/provider’s shared memory and

control platform defined events. For the purposes of this API, the following applies to processor naming

conventions:

 A DSP represents a C capable processor that does not provide CORBA capability.

The service user includes the C function specifications in the service users DSP code. Calls to the

MOCB DSP functions are made from the service users DSP source code.

All accesses to shared memory via the MOCB GPP and the MOCB DSP are atomic to prevent data

corruption (this would be assumed as a platform responsibility). An access is defined as a single API

operation (read/write/modify).

Note: A platform may have a 64-bit long data type (vs. 32bits) which should be considered during

waveform porting

C.1.1 Overview

This document contains as follows:

a. Section C.1, Introduction, of this document contains the introductory material regarding the

Overview.

b. Section C.2, Services, provides summary of service uses.

c. Section C.3, Service Primitives and Attributes, specifies the functions that are provided by the

MOCB DSP.

d. Section C.4, Interface Definitions

e. Section C.5, Data Types and Exceptions, specifies the data types that are provided by the MOCB

DSP.

f. Appendix C.A – Abbreviations and Acronyms

g. Appendix C.B – Performance Specification

C.1.2 Service Layer Description

Not applicable

C.1.3 Referenced Documents

The following documents of the exact issue shown form a part of this specification to the extent specified

herein.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 61

C.1.3.1.1 Government Documents

The following documents are part of this specification as specified herein.

C.1.3.1.1.1 Specifications

C.1.3.1.1.1.1 Federal Specifications

None

C.1.3.1.1.1.2 Military Specifications

None

C.1.3.1.1.1.3 Other Government Agency Documents

See section A.1.3.1.1.3.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 62

C.2 SERVICES

C.2.1 Interface Modules
 class Logical View

«interface»

DspMemoryAccessConsumer

+ read(LD :unsigned short, offset :unsigned long, buf :struct memoryDescriptor*, callbackLD :unsigned) :void

+ readWait(sec :long, nsec :long, LD :unsigned short, offset :unsigned long, buf :struct memoryDescriptor*) :MOCBErrorCodes

+ multiReadWait(sec :unsigned long, nsec :unsigned long, LD :unsigned short, addrList :struct MOCBMultiReadEntry*, buf :char*) :MOCBErrorCodes

+ multiLDReadWait(sec :unsigned long, nsec :unsigned long, LD :unsigned short, addrList :struct MOCBMultiLDReadEntry*, buf :char*) :MOCBErrorCodes

+ write(LD :unsigned short, offset :unsigned long, buf :struct memoryDescriptor*, callbackLD :unsigned short) :void

+ writeWait(buf :struct memoryDescriptor*, offset :unsigned long, LD :unsigned short, nsec :unsigned long, sec :unsigned long) :MOCBErrorCodes

+ multiWriteWait(sec :unsigned long, nsec :unsigned long, LD :unsigned short, addrValPairs :struct MOCBMultiWriteEntry*) :MOCBErrorCodes

+ multiLDWriteWait(sec :unsigned long, nsec :unsigned long, addrValPairs :struct MOCBMultiWriteEntry*) :MOCBErrorCodes

+ modify(LD :unsigned short, offset :unsigned long, buf :struct memoryDescriptor*, bitOperation :MOCBBitOp, callbackLD :unsigned short) :void

+ modifyWait(sec :unsigned long, nsec :unsigned long, LD :unsigned short, offset :unsigned long, buf :struct memoryDescriptor*, bitOperation :MOCBBitOp) :MOCBErrorCodes

+ configLDMap(numEntries :unsigned int, map :struct MOCBMapEntry*) :MOCBErrorCodes

«interface»

DSPEv ent

+ registerEventMux(eventId :unsigned short, LD :unsigned short, offset :unsigned long, nbyte :unsigned short) :MOCBErrorCodes

+ registerSemaphore(eventId :unsigned short, subEventId :unsigned short, semHandle :void*) :MOCBErrorCodes

+ unregisterSemaphore(semHandle :void*) :MOCBErrorCodes

Figure 7 – MOCB DSP Interface Diagram

Note: The GPP counterpart to these interfaces is available in section B. MOCB GPP API Extension.

C.2.1.1 MOCB DSP Memory Access Consumer Interface Description

The interface design of the DSPMemoryAccessConsumer is shown in Figure 7. It provides the ability to

synchronously (i.e. blocking) and asynchronously (i.e. non-blocking) read/write/modify data to and from

a service user/provider’s shared memory.

C.2.1.1.1 MOCB DSP Event Interface Description

The interface design of the DSPEvent is shown in Figure 5. It provides the ability to manage events.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 63

C.2.2 Sequence Diagrams

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 64

C.3 SERVICE PRIMITIVES AND ATTRIBUTES

To enhance the readability of this API document and to avoid duplication of data, the type definitions of

all structured types (i.e., structures, typedefs, exceptions, macros) used by the Service Primitives and

Attributes have been co-located in section C.5 Data Types and Exceptions.

C.3.1 DSPMemoryAccessConsumer

C.3.1.1 mocbRead Operation

This operation reads data from memory. The operation is non-blocking and returns a completion status

event via an MHAL message provided in the “callbackLD” parameter. This utilizes the existing MHAL

Communication Routing interface defined in the MHAL DSP API Extension [1].

Callback MHAL messages are created by the user/waveform and provided by reference in the

“callbackLD” parameter. The user/waveform is responsible for the persistence/management of the

memory allocation.

C.3.1.1.1 Synopsis

void mocbRead (

 unsigned short LD,

 unsigned long offset,

 struct MOCBMemoryDescriptor* buf,

 unsigned short callbackLD

);

C.3.1.1.2 Parameters

Parameter

Name

Description Type Units Valid Range

LD The logical

destination for the

message.

unsigned short Logical

Destination

ID

0 – 32767

offset Address offset from

base address assigned

to a logical

destination (LD).

unsigned long Offset from

Logical

Destination

Not Specified

buf The structure

indicating the number

of bytes and buffer to

store the data that is

read. The buffer is

pre-allocated by the

caller of this

operation.

struct

MOCBMemoryDescriptor

*

N/A See section C.5.4.1

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 65

Parameter

Name

Description Type Units Valid Range

callbackLD The logical

destination for the

callback message.

unsigned short Logical

Destination

ID

0 – 32767

C.3.1.1.3 State

ENABLED CF::Device::operationalState.

C.3.1.1.4 New State

This operation does not cause a state change.

C.3.1.1.5 Return Value

None

C.3.1.1.6 Originator

Service Provider

C.3.1.1.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 66

C.3.1.2 readWait Operation

This operation is blocking and provides the ability to read data from memory.

C.3.1.2.1 Synopsis

MOCBErrorCodes readWait (

 unsigned long sec,

 unsigned long nsec,

 unsigned short LD,

 unsigned long offset,

 struct MOCBMemoryDescriptor* buf

);

C.3.1.2.2 Parameters

Parameter

Name

Description Type Units Valid

Range

sec Integer seconds of time to

wait.

unsigned long Seconds 0 to

214748364

7

nsec Nanoseconds of time to

wait.

unsigned long Nanosecond

s

0 to

999999999

LD The logical destination for

the message

unsigned short Logical

Destination

ID

0 – 32767

offset Address offset from base

address assigned to a

logical destination (LD).

unsigned long Offset from

Logical

Destination

Not

Specified

buf The structure indicating

the number of bytes and

buffer to store the data that

is read. The buffer is pre-

allocated by the caller of

this operation.

struct

MOCBMemoryDescriptor

*

N/A See section

C.5.4.1

C.3.1.2.3 State

ENABLED CF::Device::operationalState.

C.3.1.2.4 New State

This operation does not cause a state change.

C.3.1.2.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

MOCBErrorCodes N/A See section

C.5.2.2

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 67

C.3.1.2.6 Originator

Service Provider

C.3.1.2.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 68

C.3.1.3 multiReadWait Operation

This operation provides the ability for the application to read data from offsets within the same logical

destination

C.3.1.3.1 Synopsis

MOCBErrorCodes multiReadWait (

 unsigned long sec,

 unsigned long nsec,

 unsigned short LD,

 struct MOCBMultiReadEntry* addrList,

 unsigned short nEntries,

 char* buf

);

C.3.1.3.2 Parameters

Parameter

Name

Description Type Units Valid Range

sec Integer seconds of

time to wait.

unsigned long Seconds 0 to 2147483647

nsec Nanoseconds of

time to wait.

unsigned long Nanoseconds 0 to 999999999

LD The logical

destination for the

message.

unsigned short Logical

Destination ID

0 – 32767

addrList A sequence of

offsets, and number

of bytes to read.

struct

MOCBMultiReadEntry*

N/A See section C.5.4.2

nEntries Number of entries

contained in the

addrList struct

unsigned short N/A 0 – 65535

buf The data read. char* N/A N/A

C.3.1.3.3 State

ENABLED CF::Device::operationalState.

C.3.1.3.4 New State

This operation does not cause a state change.

C.3.1.3.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

MOCBErrorCodes N/A See section

C.5.2.2

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 69

C.3.1.3.6 Originator

Service Provider.

C.3.1.3.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 70

C.3.1.4 multiLDReadWait Operation

This operation provides the ability for the application to read data from offsets from multiple logical

destinations.

C.3.1.4.1 Synopsis

MOCBErrorCodes multiLDReadWait (

 unsigned long sec,

 unsigned long nsec,

 struct MOCBMultiLDReadEntry* addrList,

 unsigned short nEntries,

 char* buf

);

C.3.1.4.2 Parameters

Parameter

Name

Description Type Units Valid Range

sec Integer seconds of

time to wait.

unsigned long Seconds 0 to

2147483647

nsec Nanoseconds of

time to wait.

unsigned long Nanoseconds 0 to 999999999

addrList A sequence of LDs,

offsets, and number

of bytes to read.

struct

MOCBMultiLDReadEntry*
N/A See section

C.5.4.3

nEntries Number of entries

contained in the

addrList struct

unsigned short N/A 0 – 65535

buf The data read. char* N/A N/A

C.3.1.4.3 State

ENABLED CF::Device::operationalState.

C.3.1.4.4 New State

This operation does not cause a state change.

C.3.1.4.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

MOCBErrorCodes N/A See section

C.5.2.2

C.3.1.4.6 Originator

Service Provider.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 71

C.3.1.4.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 72

C.3.1.5 mocbWrite Operation

This operation writes data to memory. The operation is non-blocking and returns a write confirmation

via an MHAL message provided in the “callbackLD” parameter. This utilizes the existing MHAL

Communication Routing interface defined in the MHAL DSP API Extension [1].

If the provided “callbackLD” is zero, a completion message is not sent when finished with the “non-

blocking” transfer.

A “non-blocking” mocbWrite() with a “callbackLD” of “NOCALLBACK” disables the confirmation

callback for that instance. “NOCALLBACK” is defined as a symbolic LD reference just like

“RFCHAIN” and is assigned a value by the platform.

Callback MHAL messages are created by the user/waveform and provided by reference in the

“callbackLD” parameter. The user/waveform is responsible for the persistence/management of the

memory allocation.

C.3.1.5.1 Synopsis

void mocbWrite (

 unsigned short LD,

 unsigned long offset,

 struct MOCBMemoryDescriptor* buf,

 unsigned short callbackLD

);

C.3.1.5.2 Parameters

Parameter

Name

Description Type Units Valid Range

LD The logical

destination for the

message

unsigned short Logical

Destination

ID

0 – 32767

offset Address offset from

base address assigned

to a logical

destination (LD).

unsigned long Offset from

Logical

Destination

Not Specified

buf The structure

indicating the number

of bytes and buffer to

be written.

struct

MOCBMemoryDescriptor

*

N/A See section C.5.4.1

callbackLD The logical

destination for the

callback message

unsigned short Logical

Destination

ID

0 – 32767

C.3.1.5.3 State

ENABLED CF::Device::operationalState.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 73

C.3.1.5.4 New State

This operation does not cause a state change.

C.3.1.5.5 Return Value

None

C.3.1.5.6 Originator

Service Provider

C.3.1.5.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 74

C.3.1.6 writeWait Operation

This operation is blocking and provides the ability to write data to memory.

C.3.1.6.1 Synopsis

MOCBErrorCodes writeWait (

 unsigned long sec,

 unsigned long nsec,

 unsigned short LD,

 unsigned long offset,

 struct MOCBMemoryDescriptor* buf

);

C.3.1.6.2 Parameters

Parameter

Name

Description Type Units Valid

Range

sec Integer seconds of time to

wait.

unsigned long Seconds 0 to

214748364

7

nsec Nanoseconds of time to

wait.

unsigned long Nanosecond

s

0 to

999999999

LD The logical destination for

the message

unsigned short Logical

Destination

ID

0 – 32767

offset Address offset from base

address assigned to a

logical destination (LD).

unsigned long Offset from

Logical

Destination

Not

Specified

buf The structure indicating

the number of bytes and

buffer to be written.

struct

MOCBMemoryDescriptor

*

N/A See section

C.5.4.1

C.3.1.6.3 State

ENABLED CF::Device::operationalState.

C.3.1.6.4 New State

This operation does not cause a state change.

C.3.1.6.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

MOCBErrorCodes N/A See section

C.5.2.2

C.3.1.6.6 Originator

Service Provider

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 75

C.3.1.6.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 76

C.3.1.7 multiWriteWait Operation

This operation provides the ability for the application to write data to offsets within same logical

destination.

C.3.1.7.1 Synopsis

MOCBErrorCodes multiWriteWait (

 unsigned long sec,

 unsigned long nsec,

 unsigned short LD,

 struct MOCBMultiWriteEntry* addrValPairs,

 unsigned short nEntries

);

C.3.1.7.2 Parameters

Parameter

Name

Description Type Units Valid Range

sec Integer seconds of

time to wait.

unsigned long Seconds 0 to 2147483647

nsec Nanoseconds of

time to wait.

unsigned long Nanoseconds 0 to 999999999

LD The logical

destination for the

message.

unsigned short Logical

Destination

ID

0 – 32767

addrValPairs A sequence of

offsets, and the

buffers of data to be

written.

struct

MOCBMultiWriteEntry*
N/A See section C.5.4.4

nEntries Number of entries

contained in the

addrValPairs struct

unsigned short N/A 0 – 65535

C.3.1.7.3 State

ENABLED CF::Device::operationalState.

C.3.1.7.4 New State

This operation does not cause a state change.

C.3.1.7.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

MOCBErrorCodes N/A See section

C.5.2.2

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 77

C.3.1.7.6 Originator

Service Provider.

C.3.1.7.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 78

C.3.1.8 multiLDWriteWait Operation

This operation provides the ability for the application to write data to offsets within multiple logical

destinations.

C.3.1.8.1 Synopsis

MOCBErrorCodes multiLDWriteWait (

 unsigned long sec,

 unsigned long nsec,

 struct MOCBMultiLDWriteEntry* addrValPairs,

 unsigned short nEntries

);

C.3.1.8.2 Parameters

Parameter

Name

Description Type Units Valid Range

sec Integer seconds of

time to wait.

unsigned long Seconds 0 to 2147483647

nsec Nanoseconds of

time to wait.

unsigned long Nanoseconds 0 to 999999999

addrValPairs A sequence of LDs,

offsets, and the

buffers of data to be

written.

struct

MOCBMultiLDWriteEntry*
N/A See section C.5.4.5

nEntries Number of entries

contained in the

addrValPairs struct

unsigned short N/A 0 – 65535

C.3.1.8.3 State

ENABLED CF::Device::operationalState.

C.3.1.8.4 New State

This operation does not cause a state change.

C.3.1.8.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

MOCBErrorCodes N/A See section

C.5.2.2

C.3.1.8.6 Originator

Service Provider.

C.3.1.8.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 79

C.3.1.9 modify Operation

This operation modifies data in memory. The operation is non-blocking and returns a modify

confirmation via an MHAL message provided in the “callbackLD” parameter. This utilizes the existing

MHAL Communication Routing interface defined in the MHAL DSP API Extension [1].

If the provided “callbackLD” is zero, a completion message is not sent when finished with the transfer.

A modify() with a “callbackLD” of NOCALLBACK disables the confirmation callback for that instance.

NOCALLBACK is defined as a symbolic LD reference just like RFCHAIN and is assigned a value by

the platform.

Callback MHAL messages are created by the user/waveform and provided by reference in the

“callbackLD” parameter. The user/waveform is responsible for the persistence/management of the

memory allocation.

The “buf” value (at a bit level) is either “&”, “|”, “XOR”, “!&”, or “!|” to the existing memory located at

LD, based on the “bitOperation”.

C.3.1.9.1 Synopsis

void modify (

 unsigned short LD,

 unsigned long offset,

 struct MOCBMemoryDescriptor* buf,

 MOCBBitOp bitOperation,

 unsigned short callbackLD

);

C.3.1.9.2 Parameters

Parameter

Name

Description Type Units Valid Range

LD The logical

destination for the

message

unsigned short Logical

Destination

ID

0 – 32767

offset Address offset from

base address

assigned to a logical

destination (LD).

unsigned long Offset from

Logical

Destination

Not Specified

buf The structure

indicating the

number of bytes and

buffer to modify.

MOCBMemoryDescriptor

*

N/A See section C.5.4.1

bitOperation The operation to

perform against

“buf” and the

memory at LD.

MOCBBitOp N/A See section C.5.2.3

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 80

Parameter

Name

Description Type Units Valid Range

LD The logical

destination for the

message

unsigned short Logical

Destination

ID

0 – 32767

C.3.1.9.3 State

ENABLED CF::Device::operationalState.

C.3.1.9.4 New State

This operation does not cause a state change.

C.3.1.9.5 Return Value

None

C.3.1.9.6 Originator

Service Provider

C.3.1.9.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 81

C.3.1.10 modifyWait Operation

This operation is blocking and provides the ability to modify data in memory.

C.3.1.10.1 Synopsis

MOCBErrorCodes modifyWait (

 unsigned long sec,

 unsigned long nsec,

 unsigned short LD,

 unsigned long offset,

 struct MOCBMemoryDescriptor* buf,

 MOCBBitOp bitOperation

);

C.3.1.10.2 Parameters

Parameter

Name

Description Type Units Valid

Range

sec Integer seconds of time to

wait.

unsigned long Seconds 0 to

214748364

7

nsec Nanoseconds of time to

wait.

unsigned long Nanosecond

s

0 to

999999999

LD The logical destination for

the message

unsigned short Logical

Destination

ID

0 – 32767

offset Address offset from base

address assigned to a

logical destination (LD).

unsigned long Offset from

Logical

Destination

Not

Specified

buf The structure indicating

the number of bytes to be

modified and the location

of memory to modify.

MOCBMemoryDescriptor

*

N/A See section

C.5.4.1

bitOperation The operation to perform

against “buf” and the

memory at LD.

MOCBBitOp N/A See section

C.5.2.3

C.3.1.10.3 State

ENABLED CF::Device::operationalState.

C.3.1.10.4 New State

This operation does not cause a state change.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 82

C.3.1.10.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

MOCBErrorCodes N/A See section

C.5.2.2

C.3.1.10.6 Originator

Service Provider

C.3.1.10.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 83

C.3.1.11 configLDMap Operation

This operation maps logical destinations to a starting address in the waveform memory map. The

terminal software has knowledge of which portion of its memory map are for the waveform.

C.3.1.11.1 Synopsis

MOCBErrorCodes configLDMap (

 unsigned int numEntries,

 struct MOCBMapEntry* configMap

);

C.3.1.11.2 Parameters

Parameter

Name

Description Type Units Valid Range

numEntries Number of entries in

the map

unsigned int N/A Not Specified

configMap Mapping of LDs to

addresses

struct

MOCBMapEntry*

N/A See section C.5.4.2

C.3.1.11.3 State

ENABLED CF::Device::operationalState.

C.3.1.11.4 New State

This operation does not cause a state change.

C.3.1.11.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

MOCBErrorCodes N/A See section

C.5.2.2

C.3.1.11.6 Originator

Service Provider

C.3.1.11.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 84

C.3.2 DSPEvent

C.3.2.1 registerSemaphore Operation

This operation registers a semaphore managed (created and destroyed) by the waveform software. The

waveform calls this operation for each relevant subEvent represented by a bit in the event mux

register**.

The semaphore is posted by the MOCB software when the specified MOCB event occurs. This event is

known by the waveform software and the waveform firmware (e.g., an FPGA event line). The waveform

hardware event line(s) is(are) mapped to terminal specific hardware (e.g., a GPIO line(s)) during

waveform porting. The terminal software has knowledge of which terminal lines are connected to

waveform hardware lines, and upon assertion of that discrete, the semaphore is posted.

The MOCB software provides event triggering to waveform software on a per bit basis within the event

mux register.

The waveform firmware is responsible to clear all the subEvent bit(s) in the mux register after detecting

the MOCB software reading the mux register (if more synchronization controls are required, the

waveform may implement an independent clear/feedback register that can be written by waveform

software via the MOCB write() or writeWait() operations)

MOCB software will post all subEvents present when the mux register is read after the MOCB event line

is signaled.

** Note: The MOCB firmware provides a minimum of (1…n) event line(s) for waveform use. The

waveform firmware provides one event mux register(1..n bytes) for each MOCB event line.

C.3.2.1.1 Synopsis

MOCBErrorCodes registerSemaphore (

 unsigned short eventId,

 unsigned short subEventId,

 void* semHandle

);

C.3.2.1.2 Parameters

Parameter

Name

Description Type Units Valid Range

eventId The event Identifier

to tie the semaphore

to.

This represents the

event provided to

waveform software

from the MOCB

FPGA interface.

unsigned short N/A 0 – 32767

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 85

Parameter

Name

Description Type Units Valid Range

subEventId Bit position in the

waveform provided

mux register

unsigned short N/A 0 – 32767

semHandle Name of the

semaphore created by

the application

void* N/A N/A

C.3.2.1.3 State

ENABLED CF::Device::operationalState.

C.3.2.1.4 New State

This operation does not cause a state change.

C.3.2.1.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

MOCBErrorCodes N/A See section

C.5.2.2

C.3.2.1.6 Originator

Service Provider

C.3.2.1.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 86

C.3.2.2 unregisterSemaphore Operation

Un-registers a previously registered semaphore registered upon a MOCB event. The only parameter

needed to un-register a semaphore is the name.

C.3.2.2.1 Synopsis

MOCBErrorCodes unregisterSemaphore (void* semHandle);

C.3.2.2.2 Parameters

Parameter

Name

Description Type Units Valid Range

semHandle Name of the

semaphore created by

the application

void* N/A N/A

C.3.2.2.3 State

ENABLED CF::Device::operationalState.

C.3.2.2.4 New State

This operation does not cause a state change.

C.3.2.2.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

MOCBErrorCodes N/A See section

C.5.2.2

C.3.2.2.6 Originator

Service Provider

C.3.2.2.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 87

C.3.2.3 registerEventMux Operation

This operation assigns an event to a mux register of subEvents the waveform will use. The waveform

calls this operation on each MOCB event line.

C.3.2.3.1 Synopsis

MOCBErrorCodes registerEventMux (

 unsigned short eventId,

 unsigned short LD,

 unsigned long offset,

 unsigned short nByte

);

C.3.2.3.2 Parameters

Parameter

Name

Description Type Units Valid Range

eventId The event Identifier

associated with the

discrete line.

unsigned short N/A 0 – 32767

LD The logical

destination for the

message.

Location in the

waveform memory

space where the

platform reads

“nbytes” of event

mux register when

“eventId” occurs

unsigned short Logical

Destination

ID

0 – 32767

offset Address offset from

base address

assigned to a logical

destination (LD).

unsigned long Offset from

Logical

Destination

Not Specified

nByte The number of bytes

to be read.

unsigned short N/A 0 – 65525

C.3.2.3.3 State

ENABLED CF::Device::operationalState.

C.3.2.3.4 New State

This operation does not cause a state change.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 88

C.3.2.3.5 Return Value

Description Type Units Valid Range

The error code representing the status

of the operation's completion

MOCBErrorCodes N/A See section

C.5.2.2

C.3.2.3.6 Originator

Service Provider

C.3.2.3.7 Exceptions

None

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 89

C.4 INTERFACE DEFINITIONS

None

C.5 DATA TYPES AND EXCEPTIONS

C.5.1 Data Types

None

C.5.2 Macros

C.5.2.1 MOCBAddressIndexType

This enumeration definition enumerates the address indexing that can be performed.

typedef unsigned short MOCBAddressIndexType;

const MOCBAddressIndexType CONSTANT = 0;

const MOCBAddressIndexType INCREMENT = 1;

const MOCBAddressIndexType DECREMENT = 2

unsigned short Element Value Description

MOCBAddressIndexType CONSTANT 0 Constant address indexing

INCREMENT 1 Increment address indexing

DECREMENT 2 Decrement address indexing

C.5.2.2 MOCBErrorCodes

This type definition is a JTRS extension enumeration (see JTRS CORBA Types [3]). It enumerates the

error codes supported by the MOCB.

typedef short MOCBErrorCodes;

const MOCBErrorCodes SUCCESSFUL = 0;

const MOCBErrorCodes INV_MEM_ACCESS = -1;

const MOCBErrorCodes INV_LD_OR_ADDR = -2;

const MOCBErrorCodes SRC_MEM_NOT_ALIGNED = -3;

const MOCBErrorCodes DST_MEM_NOT_ALIGNED = -4;

const MOCBErrorCodes INV_EVENT_ID = -5;

const MOCBErrorCodes INV_SEMAPHORE_NAME = -6;

const MOCBErrorCodes INV_TIME = -7;

const MOCBErrorCodes INV_SUBEVENT = -8;

const MOCBErrorCodes TIMER_EXPIRED = -9;

const MOCBErrorCodes INV_SIZE = -10;

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 90

short Element Value Description

MOCBErrorCodes SUCCESSFUL 0 Successful.

The transfer was successfully

queue/executed

INV_MEM_ACCESS -1 Invalid Memory Access.

The memory location addressed

was outside the platform's valid

range.

INV_LD_OR_ADDR -2 Invalid LD / Address.

The LD does not have a valid

address map entry.

SRC_MEM_NOT_ALIGNED -3 Source Memory Not Aligned.

The (source) location where the

data is originally stored, is not

located on the processors

defined address boundary for an

efficient memory transfer. i.e.

An error would occur if

addressing the second byte in a

32-bit word, as the start of a

word transfer.

DST_MEM_NOT_ALIGNED -4 Destination Memory Not

Aligned.

The location where the data will

be stored is not located on that

processors defined addressable

boundary for an efficient

memory transfer. i.e. An error

would occur if addressing the

second byte in a 32-bit word, as

the start of a sequence of word

transfer.

INV_EVENT_ID -5 Invalid EventID.

The event ID does not

correspond to a valid MOCB

event line.

INV_SEMAPHORE_NAME -6 Invalid Semaphore Name.

The event string has not been

mapped to a subEventId.

INV_TIME -7 Invalid Time (i.e. sec or

nsec).

The time specified is outside the

valid range.

INV_SUBEVENT -8 Invalid SubEventID

The subEventId is outside the

bounds of the mux register size.

TIMER_EXPIRED -9 Timer expired.

The time specified expired prior

to completion of the operation.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 91

short Element Value Description

INV_SIZE -10 Invalid size.

The number of bytes requested

exceeds the limit that can be

returned via the MHAL

callback.

C.5.2.3 MOCBBitOp

This enumeration definition is a JTRS extension enumeration (see JTRS CORBA Types [3]). It

enumerates the bitwise operations that can be performed.

typedef unsigned short MOCBBitOp;

const MOCBBitOp AND = 0;

const MOCBBitOp OR = 1;

const MOCBBitOp XOR = 2;

const MOCBBitOp NAND = 3;

const MOCBBitOp NOR = 4;

unsigned short Element Value Description

MOCBBitOp AND 0 A bitwise “and”.

OR 1 A bitwise “or”.

XOR 2 A bitwise “xor”.

NAND 3 A bitwise “nand”.
NOR 4 A bitwise “nor”.

C.5.3 Exceptions

Not applicable

C.5.4 Structures

C.5.4.1 MOCBMemoryDescriptor

This structure defines the byte size "of" and pointer "to" a memory allocation.

struct MOCBMemoryDescriptor {

 unsigned short nByte;

 char* bufAddr;

};

Struct Attributes Type Valid

Range

Description

MOCBMemoryDescriptor nByte unsigned short 0 – 65531 Set by the

user/waveform and

used by MOCB

bufAddr char* N/A Allocated by the

user/waveform and

used by MOCB

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 92

C.5.4.2 MOCBMultiReadEntry

This structure defines the pairing between an offset and number of bytes to read.

struct MOCBMultiReadEntry {

 unsigned long offset;

 unsigned short nByte;

};

Struct Attributes Type Valid Range Description

MOCBMultiReadEntry offset unsigned long Not Specified Address offset

from base

address

assigned to a

logical

destination

(LD).

nByte unsigned short 0 – 65531 The number of

bytes to read.

C.5.4.3 MOCBMultiLDReadEntry

This structure defines the pairing between an offset and number of bytes to read.

struct MOCBMultiLDReadEntry {

 unsigned short LD;

 unsigned long offset;

 unsigned short nByte;

};

Struct Attributes Type Valid Range Description

MOCBMultiLDReadEntry LD unsigned short 0 – 32767 The logical

destination for

the message.

offset unsigned long Not Specified Address offset

from base

address

assigned to a

logical

destination

(LD).

nByte unsigned short 0 – 65531 The number of

bytes to read.

C.5.4.4 MOCBMultiWriteEntry

This structure defines the pairing between an offset and buffer of data to be written.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 93

struct MOCBMultiWriteEntry {

 unsigned long offset;

 char* buf;

 unsigned short nByte;

};

Struct Attributes Type Valid Range Description

MOCBMultiWriteEntry offset unsigned long Not Specified Address offset from

base address

assigned to a logical

destination (LD).

buf char* N/A The data to be

written.

nByte unsigned short 0 – 65535 The number of bytes

to write.

C.5.4.5 MOCBMultiLDWriteEntry

This structure defines the pairing between an LD, offset and buffer of data to be written.

struct MOCBMultiLDWriteEntry {

 unsigned short LD;

 unsigned long offset;

 char* buf;

 unsigned short nByte;

};

Struct Attributes Type Valid Range Description

MOCBMultiLDWriteEntry LD unsigned short 0 – 32767 The logical

destination for the

message.

offset unsigned long Not Specified Address offset from

base address

assigned to a logical

destination (LD).
buf char* N/A The data to be

written.

nByte unsigned short 0 – 65535 The number of

bytes to write.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 94

C.5.4.6 MOCBMapEntry

This structure defines the mapping between a logical destination and address in memory.

struct MOCBMapEntry {

 unsigned short LD; // the logical destination

 unsigned long address; // the address this LD maps to

 MOCBAddressIndexType indexType; // the index type for this address

};

Struct Attribute

s

Type Valid Range Description

MOCBMapEntry LD unsigned short 0 – 32767 The logical

destination for the

message.

address unsigned long Not Specified The address the

LD maps to.

indexType MOCBAddressIndexType See section C.5.2.1 The index type for

this address.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 95

APPENDIX C.A – ABBREVIATIONS AND ACRONYMS
See section Appendix A.A.

APPENDIX C.B – PERFORMANCE SPECIFICATION
Not applicable

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 96

D. MOCB FPGA API EXTENSION

D.1 INTRODUCTION

The MOCB FPGA API consists of a collection signals and busses between an initiator and a target that

provide services to route MHAL communications. For the purposes of this API, the following applies to

processor naming conventions:

 An FPGA represents a HDL capable processor, again without CORBA capability.

At build time, an MOCB FPGA interface precompiled core or VHDL is compiled together with the

waveform HDL to form a single loadable FPGA image for the target platform. An HDL entity

description defines MOCB interface signals available to the waveform FPGA developer.

The MOCB interface was created to utilize memory-mapped interfaces for a read (pull) capability

between Waveform Components. This allows Components, as shown in Figure 8, to achieve better real-

time behaviors with less isolation. For example if we assume CE #1 is a DSP and CE #2 is an FPGA,

this interface gives the DSP capability to write/read data to/from Component B or C. Likewise, in the

FPGA, Component B could use the interface internally to read/write data in Component C.

Note: In Figure 8, the MOCB is assumed to be part of the orange “MHAL” blocks.

Modem

Transceiver

Power Amplifier

CE #1 (DSP) CE #2 (FPGA)

Component

C

Component

A

Component

B

Modem

M

H

A

L

M

H

A

L

Figure 8 – Waveform Component Allocation Example

Another feature incorporated into the interface is event lines. For example in Figure 8, Component C

might signal “data needs to be read” to Component A. As a result “data is read” from the FPGA by the

DSP. The platform designer determines the number and location of the Event lines.

The MOCB interface, illustrated in Figure 9, consists of two interface categories and three categories of

signals.

The interfaces are:

 Address / Data bus interface

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 97

 Event interface

The categories of signals are:

 Required basic interface signals

 Optional Basic Signals

 Extended interface signals

Initiator
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

Target
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

MOCB

Required

Basic

Interface

Signals

Initiator
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_Event[q:0]

Target
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_Event[q:0]

MOCB

MOCBI_<name>_Byte_En[t:0]

MOCBI_<name>_SEL[p:0]

MOCBI_<name>_Byte_En[t:0]

MOCBI_<name>_SEL[p:0]

Optional

Basic

Signals

MOCBI_<name>_TidV

MOCBI_<name>_Tid[r:0]

MOCBI_<name>_Lock

MOCBI_<name>_Size[s:0]

MOCBI_<name>_SizeV

MOCBT_<name>_CmdA

MOCBT_<name>_TidV

MOCBT_<name>_Tid[r:0]

Extended

Interface

Signals

MOCBI_<name>_TidV

MOCBI_<name>_Tid[r:0]

MOCBI_<name>_Lock

MOCBI_<name>_Size[s:0]

MOCBI_<name>_SizeV

MOCBT_<name>_CmdA

MOCBT_<name>_TidV

MOCBT_<name>_Tid[r:0]

Basic

Interface

Signals

Figure 9 – MOCB Bus Interface

The address data signals are the basic set of signals required to provide data access to/from the FPGA

waveform. They are intended for processor communication, radio control interface, external memory

interface, inter-chip communication etc. The platform provides a single access point for address / data

per FPGA per waveform per hardware interface. If the FPGA has multiple hardware interfaces intended

for waveform use, the platform will abstract each interface to a unique separate MOCB access point. If

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 98

the waveform spans multiple FPGAs, each FPGA will provide an access point per hardware interface on

the respective FPGA acceptable by the waveform.

The Event interface provides a means to signal events or occurrences. The initiator sources the event

signals to the target. The Event initiator may reside in either the platform or waveform logic.

D.1.1 Overview

This document contains as follows:

a. Section D.1, Introduction, of this document contains the introductory material regarding the

Overview, and Service Layer description.

b. Section D.2, Services

c. Section D.3, Service Primitives and Attributes

d. Section D.4, Definitions

e. Section D.5, Data Types and Exceptions

f. Appendix D.A – Abbreviations and Acronyms

g. Appendix D.B – Performance Specification

h. Appendix D.C – Clock Specification

D.1.2 Service Layer Description

D.1.2.1 MOCB FPGA Signals

D.1.2.1.1 FPGA Signals Naming Convention

The MOCB interface provides for a standardized naming convention for the benefit of readability,

commonality and the identification/differentiation from other bus signals that may exist within the

FPGA.

 All MOCB signals begin with a MOCB (I,T) identifier prefix with “I” for initiator or a “T” for

target to identify the driver of each signal.

The standard provides for an optional user defined field to allow the user to uniquely identify the

individual MOCB bus from other MOCB interfaces that may reside within the FPGA. The final required

field is the functional identifier of the signal.

Example

MOCBI_WF_A_Data = MOCB data bus driven by an initiator to waveform A

MOCBT_WF_A_Data = MOCB data bus driven by a target from waveform A

D.1.2.1.2 MOCB FPGA Best Design Practice Implementation

In order to ensure design portability and compatibility of independently developed cores, the MOCB

interface conform to some basic best practice design rules. This will ensure that logic independently

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 99

developed by different development teams will contain the same basic design practices and thus avoid

common interfacing compatibility issues.

 MOCB Interface be synchronous to the MOCB clock.

 MOCB Interface has an asynchronously applied, synchronously released reset signal used to

reset target and initiator logic to a default state.

 All MOCB Interface signaling be active high.

 All MOCB Interface signals are driven from a MOCB clocked register.

 MOCB Interface be little endian.

 MOCB Interface is used to abstract all external HW interfaces, including but not limited to

processor interfaces, radio frequency control, external RAM memory, and FLASH.

 MOCB Interface address signals represent a byte address regardless of the data width.

Note1: The MOCB standard does not define the source of the MOCB clocks It may be a platform

interface clock or a waveform clock (see Appendix D.C – Clock Specification). For implementations

where the waveform requires a different clock than the platform provides, interconnect translation logic

would need to be created to transfer between the initiator and target interface.

Note2: The MOCB does not preclude the use of logic locks or source code for the platform.

Note3: The MOCB does not specify the location of the bus adaptation and it may be in the waveform or

platform.

D.1.2.1.3 Basic MOCB FPGA Signals

The basic MOCB interface signals are the basic set of signals required by the platform to adhere to the

MOCB interface protocol. The actual set of signals implemented will be dependent on the capabilities of

the hardware platform or needs of the waveform. For instance, if the hardware platform provides a push

packet interface, it may not be practical to provide a read enable on the MOCB interface. The signals

provided to the MOCB interface are left to the platform and waveform developers to determine. The

Basic MOCB Interface satisfies the following requirements:

 MOCB Interface uses the Basic Interface Signals (Input Data, Output Data, Address, Clock,

Read/Write enables, Data Valid, and Event lines) based on the configuration of the hardware

platform.

 MOCB compliant systems utilize an interconnect fabric to translate the initiator address width to

the target address width.

 MOCB Interface address width is adjusted to account for differences between the platform data

width and the waveform data width. (For example, drop the least significant address bit when

converting a 16-bit platform data bus to a 32-bit waveform data bus.)

 MOCB compliant systems utilize an interconnect fabric to translate the platform data width to

the waveform data width. (For example, logic is needed to take two 16-bit platform accesses and

form a 32-bit waveform access)

 MOCB Interface limits the data bus width to 8 times a power of 2 (e.g. 8 bits, 16 bits, 32 bits,

etc.).

 MOCB Interface supports Data Accept (DataA) signal for flow control.

 MOCB Interface supports single-cycle writes for a single word or back-to-back burst transfers as

illustrated in the timing diagrams in section D.1.2.3.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 100

 MOCB Interface supports single-cycle reads for a single word or back-to-back burst transfers as

illustrated in the timing diagrams in section D.1.2.3.

 MOCB Interface provides one or more event lines whose functionality will be user defined but

synchronous to MOCB clock (Event).

 MOCB Event Interface Initiator provides a single cycle pulse, synchronous to MOCB clock, to

indicate an active event

 MOCB Interface supports variable latency reads (“DataV”).

 MOCB Interface Targets always provides a DataV signals coinciding with the return of valid

data.

 MOCB Interface Initiators utilizes the DataV as an indication of Valid Data return.

Figure 10 illustrates the smallest subset of signals provided by the platform to the waveform to provide

communication to/from the outside software and hardware components. It is not required that the

waveform utilizes the entire set of signals, even though the signals are required to be provided by the

platform. If the waveform has no functional use for a particular set of signals, it may drop the signals

from its interface. The platform must still provide the complete set of basic signals for use by future

waveforms. If the waveform and platform required functions and features do not align, a translation

layer is required.

The MOCB Clock is the clock for all signals associated with a particular Initiator/Target(s) pair. The

source of the MOCB clock system dependent. If the required clock of the Initiator and Target do not

align, a translation layer may be required as part of the porting tasks,

The MOCB Reset is an asynchronously set, synchronously released reset. It is synchronous to the

MOCB CLK.

The MOCB Read/Write lines are active high signals that indicate if the Initiator intends to perform a data

transfer. The read write lines are also used to as part of the arbitration protocol. When using the

extended command accept feature (CmdA), the read / write signals serve as a request lines. The Initiator

would present the address and active read or write line. This indicates to the Target the Initiator intends

perform a transfer. The target will indicate the command has been accepted by driving the Command

Accept signal active. Section D.1.2.5.6 illustrates an example transfer.

The MOCB address bus is the address presented to the Target by the Initiator.

The MOCB Data Bus is defined as the bus used to synchronously pass data between the Initiator and the

Target. It is limited to 8 times the power of ‘2’ in width. If the target and Initiator bus width do not

align, a translation layer may be constructed to adapt the target to the Initiator if neither the target nor the

initiator provide bus adaptation.

The MOCB protocol provides the designer the capability to throttle or hold off return data from the

Target by utilizing the Data Accept (DataA). This permits stalling the return of data from the Target. In

the configuration where there is a single initiator attached to many targets and the targets have a variable

latency read return, it may be necessary to stall one of the targets data return to avoid data bus collisions

when reading across multiple targets in a burst or contiguous read. The data return accept function

should be used in conjunction with the command accept function. When the initiator stalls the return

data pipeline, the target should also stall the command pipeline to keep from over running the target with

commands it cannot service. The intent is that the target merely stalls its command and data pipeline

rather than forced to store commands internally until the data can be returned to the initiator. The

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 101

pipeline itself becomes the storage elements to store in flight commands and return data. IF the designer

chooses to implement the Data Accept without use of the Command accept, the target will be forced to

buffer return data until the target can accept the data.

The MOCB Event lines provide a means of signaling an event or occurrence to or from the waveform.

The Event lines pass both into the waveform as well as from the waveform. Pulse Per Second (PPS) was

an example of an event that could be passed into the waveform. A read request is an example of an event

line that would be passed from the waveform. The Event lines are segregated into a separate interface

class. They may have (but not required to have) their unique CLK and reset. The direction on the event

lines follows the standard nomenclature of the interface. The Initiator defines the source of a transaction.

The Target defines the destination of the transaction. In the case of data transfer across the data

interface, the Initiator originates the transfer. The target is the logic acted upon for the transaction. It

does not reflect the actual flow of data, just the source of the transfer command. In the case of the event

lines, the event originates from the Initiator and is passed into the Target. The events are not polled. In

the case of events from the waveform, the EVENT Initiator would reside in the waveform. The platform

would provide a Target to receive the events.

The DataV signal was created to satisfy two basic needs; variable latency returns within a platform and

performance variations between different platforms.

Variable latency returns encompasses many scenarios. They include reads across asynchronous

boundaries, non-deterministic interfaces or shared bus access where transfers may be stalled. When

applied to the variable return latency, the feature allows for the simplification of logic within the

waveform and platform as well as increasing performance. There would be no need to buffer data and

hold until all data is returned before forwarding to the Initiator based on a set latency. In cases where a

set latency were required, it would have to be greater than the maximum latency variation of the target.

Forcing a set latency adds complexity and hinders performance. For waveforms that require a set

latency, accommodations would need to be made as part of the porting effort to support the needs of the

waveform. However, in cases where variations in read returns posed no issue to the waveform design,

there would be advantage to the waveform as well as platform in the form of complexity/resource

reduction and performance increases.

 A secondary advantage of the DataV is to accommodate differences in platform performance. For

example, if a RAM access takes 3 cycles on platform X and a similar RAM access takes 4 cycles on

platform Y, a waveform, ported on both platforms may not have to change logic to accommodate the

variations from platform to platform. The waveform may simply trigger off the DataV.

All Targets must provide a DataV. However, it is left to the logic designer to decide if they want to take

advantage for the DataV in the initiator logic. A designer may choose to use the DataV or the Target

Data Valid Latency constant to customize the logic

While the DataV feature allows for the possibility of variable data returns, it does not mandate that data

returns will be variable. For example, in the case where the RAM is attached to the FPGA for the sole

use of the waveform, the returns would be deterministic. All reads would require the same number of

CLK cycles. The Initiator may choose to use a DataV or the latency number specified in the package

file (section D.1.2.3.5.6) though a generic variable. In both cases, the waveform logic could assume data

returned in a deterministic time frame.

The MOCB Invalid Address signal is used by the target to notify the Initiator that the requested address

was invalid. Because the MOCB protocol relies on the DataV to complete a read transfer, an invalid

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 102

address hit may cause a lock up condition. A target may not provide a DataV return when reading from

an invalid address space. Without an indication from the target indicating a transfer is complete or

invalid, the Initiator will hang waiting for a the DataV. The Invalid address signal provides the designer a

means of terminating invalid address transfer without indicating valid data has been returned. It may also

be used in error reporting logic.

Initiator
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

Target
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

MOCB

Required

Basic

Interface

Signals

Initiator
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_Event[q:0]

Target
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_Event[q:0]

MOCB

Figure 10 – MOCB **Required Basic Bus Interface Signals

**Note: The platform must provide all required signals, however a waveform is not required to utilize all

required signals.

Common Signals

MOCB_<name>_CLK MOCB clock – Data and control signals are captured or driven on

the rising edge of the MOCB Clock

MOCB_<name>_Reset Synchronous Released Reset

Initiator Driven Signals

MOCBI_<name>_RD_EN Read Enable signal used to identify the transfer and a data fetch

MOCBI_<name>_WR_EN Write Enable signal used to identify the transfer and data deposit

MOCBI_<name>_Addr [m:0] Address bus (m down to 0) user to address the data transfer

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 103

MOCBI_<name>_Data[(8*2^n)-1: 0] Data bus – Data Bus used to transfer data to the target. The Data

bus width is required to 8 times a power of 2 (for example: 8 bits,

16 bits, 32 bits…).

MOCBI_<name>_DataA Return Data Accepted by Target

MOCBI_<name>_Event[q:0] User defined event lines used to signal a CE of an event

Target Driven Signals

MOCBT_<name>_Data[(8*2^n)-1: 0] Data Bus used to transfer data to the Initiator. The Data bus width

is required to be 8 times a power of 2 (for example: 8 bits, 16

bits, 32 bits…).

MOCBT_<name>_DataV Data Valid - Indicates when returned data is valid for each clock

cycle on the bus. Data Valid must be active for each valid word of

the return data on each cycle of the bus.

MOCBT_<name>_InvalidAddr Invalid address signal.

D.1.2.1.4 Basic MOCB FPGA Signals (Optional)

The optional MOCB interface signals provide the designer additional signals in order to optimize the

interface for the needs of the platform and waveform. The MOCB Optional Basic Interface satisfies the

following requirements:

 MOCB Interface may utilize the byte enable signal to specify specific bytes within a data word.

 MOCB Interface may support an address select line.

Figure 11 illustrates the optional basic signals defined by the MOCB protocol. The platform designer is

free to choose to implement these signals or not. The intent of the signals is to provide the designer with

some of the common features available on hardware components and thus reduce the logic required for

abstraction.

The MOCB select line will allow the user to take advantage of memory select/chip select lines available

on many common DSP and GPP processors. The designer may also choose to utilize the MOCB select to

handle an overlapping address mapping.

Initiator
MOCBI_<name>_Byte_En[t:0]

MOCBI_<name>_SEL[p:0]

Target

MOCB

MOCBI_<name>_Byte_En[t:0]

MOCBI_<name>_SEL[p:0]

Optional

Basic

Signals

Figure 11 – Optional Basic Signals

Initiator Driven Signals

MOCBI_<name>_Byte_En[t:0] Byte Enable

MOCBI_<name>_SEL[p:0] Address memory select

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 104

D.1.2.1.5 Extended MOCB PFGA Signals

The Extended MOCB interface signals provide the platform greater flexibility for complex architectures,

supports advanced flow Control and enable the waveform(s) to gain ownership of the bus through

arbitration. The MOCB Extended Interface satisfies the following requirements:

 MOCB Interface may use the Extended Interface Command Accept (CmdA) Signal for flow

control.

 MOCB Interface may use the Extended Interface Command Accept (CmdA) Signal for

access control.

 MOCB Interface may use the Extended Interface Command Accept (CmdA) function for

flow control when implementing the Interface Data Accept (DataA) function.

 MOCB Interface may use the Extended Interface Transaction ID (Tid) and Transaction Valid

(TidV) Signals for out of order read responses.

 MOCB Interface may use the Extended Interface Lock Signal for locked transfers.

 MOCB Interface may use the Extended Interface Size Signal to provide the target with the

transfer size in advance.

 MOCB Interface may define separate master and slave interfaces, such that any given

interface is either a master or a slave, but not both.

 MOCB Interface may support multi-master bus control (“Command Accept").

 MOCB Interface may support interrupted or stalled transactions. (“Command Accept /

DataA”).

 MOCB Interface may support locked transactions to provide bus exclusivity to a given user.

(“lock”).

 MOCB Interface may support out-of-order read data by using the Transaction ID (Tid)

signals.

Figure 12 illustrate the extended optional signals available to the developer within the MOCB protocol.

These signals provide flexibility and scalability for high performance, multi-master advanced control

platforms. Utilizing various combinations of these signals, the MOCB interface will be able to support

data transfer throttling, bus arbitration, critical transfer locks, read modify write locks, out of band

transfer size notification, and out of order data responses. When porting a waveform to an individual

platform, there may be instances where the supported extended features or required features of a platform

and waveform do not align. If the platform and waveform have not provided the needed functionality or

configurability, a translation layer may be required to provide a bridge between the platform and

waveform logic. The creation of the translation logic would be part of the porting exercise. D.1.2.4

Translation Layer illustrates an example of a logic layer required to mate a MOCB waveform with a

MOCB platform with incompatible configurations.

The MOCB extended interface bus protocol provides the designer the capability of utilizing the

Command Accept signal (CmdA) for both bus arbitration and data throttling (flow Control). The Target

can use the signal to grant access to the bus as well as throttle the data transfer. The intent of this feature

is to provide the capability of allowing an Initiator to request access to a bus and allow the Target, with

support of an arbiter, to grant access. The feature is also useful for throttling the flow of data between

interfaces’ with different bandwidths. The Command Accept feature can be used to throttle data flow

between the initiator and the target interfaces by holding off or stalling commands.

The MOCB extended interface bus protocol provides the designer the capability to throttle or holding off

the return data from the Target by utilizing the Data Accept (DataA). The data accept allows the

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 105

designer to stall the return of data from the Target. In the configuration where there is a single initiator

attached to many targets and the targets have a variable latency read return, it may be necessary to stall

one of the targets data return to avoid data bus collisions when reading across multiple targets in a burst

or contiguous read. The data return accept function should be used in conjunction with the command

accept function. When the initiator stalls the return data pipeline, the target should also stall the

command pipeline to keep from over running the target with commands it cannot service. The intent is

that the target merely stalls its command and data pipeline rather than being forced to store commands

internally until the data can be returned to the initiator. The pipeline itself becomes the storage elements

to store in flight commands and return data. If the designer chooses to implement the data Accept

without use of the Command accept, the target will be forced to buffer return data until the target can

accept the data.

The MOCB extended interface bus protocol provides the designer with the option to incorporate a LOCK

feature. The Lock signal indicates to the Target arbiter that the Initiator needs to retain ownership of the

bus during a transfer as well as between transfers. This prevents the Target from granting access to a

higher priority transfer during the current transfer or from giving ownership of the bus to another

requester between transfers. Once a series of transfers starts with the lock signal set, the target arbiter

must maintained continued ownership of the bus to that initiator.

The MOCB extended interface bus protocol provides the designer with the option to utilize the SIZE

field of the interface. The intent of this field is to advertise the size of the transfer in advance to allow

Direct Memory Access (DMA) to be set up to handle the transfer or to form a data packet header for a

push packet interface. This reduces the need to buffer transfer to determine the size.

The MOCB extended interface bus protocol provides the designer with the ability to “TAG” read

transfers with a unique transfer identification number (Tid). The intent of this feature is to provide the

application the ability to support out of order transfers. In some platform applications, it is difficult to

guarantee multiple read transfers to multi sinks will be returned in the order they were requested. This is

especially true for high-speed push packet interfaces such as Ethernet. Providing Transaction IDs

enables the application to tag a transfer with a unique ID that will be returned with the data and used to

inform the Initiator what transaction the data is associated with.

Initiator
MOCBI_<name>_TidV

MOCBI_<name>_Tid[r:0]

MOCBI_<name>_Lock

MOCBI_<name>_Size[s:0]

MOCBI_<name>_SizeV

MOCBT_<name>_CmdA

MOCBT_<name>_TidV

MOCBT_<name>_Tid[r:0]

Target

MOCB

Extended

Interface

Signals

MOCBI_<name>_TidV

MOCBI_<name>_Tid[r:0]

MOCBI_<name>_Lock

MOCBI_<name>_Size[s:0]

MOCBI_<name>_SizeV

MOCBT_<name>_CmdA

MOCBT_<name>_TidV

MOCBT_<name>_Tid[r:0]

Figure 12 – MOCB Extended Interface Signals

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 106

Initiator Driven Signals

MOCBI_<name>_TidV Transaction ID Valid

MOCBI_<name>_Tid[r:0] Transaction ID

MOCBI_<name>_Lock Transfer Locked

MOCBI_<name>_Size[s:0] Transfer Size

MOCBI_<name>_SizeV Transfer Size Valid

Target Driven Signals

MOCBT_<name>_CmdA Command Accept

MOCBT_<name>_TidV Return Transaction ID Valid

MOCBT_<name>_Tid[r:0] Return Transaction ID

D.1.2.2 Data and Control Flow

The MOCB interface is broken down into two primary functional components, the Initiator and the

Target. This section will illustrate the necessary flow to operate as one or the other of these primary

functions.

The flow chart is depicted using a standardized symbol flow system to aid in the decision and process of

performing proper bus protocol to meet the MOCB requirements. See Figure 13 for the list of standard

symbol definitions.

Delay

Process

Operation

Operation

/

Process

Joint Process

Combine any two

Symbols

Ex. Drive nail, Type

Letter

Ex. Wait for water to boil

Ex. Perform a process

Beginning /

Temination

Decision

Inspection/

Measurement

Storage

Ex. RAM, Warehouse

Ex. Read Temperature

Ex. Answers Question like,

“Is it raining?” Y/N.

Ex. This will be the beginning

and end of a program flow.

LEGEND

Figure 13 – Basic Flowchart Standard Definitions

Since the interface has both basic and enhanced features, a super-set is illustrated to demonstrate the

most complex to the simplest implementation. The optional or enhanced control and data flow features

are identified using dashed lines of connection, isolating them from the basic flow features.

Many aspects for the logic necessary to perform Data, Address, and Tid assignments are not captured and

should be implementer specific.

In the diagrams, note where interface signaling and data is passed out of the flow of the Target and into

the Initiator and vice versa. This is done with the use of arrows showing the origin or destination for a

particular signal or data.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 107

 Initiator Data Transfer Flow

Lock

Transfer

?

Set

Selects

?

Send

Size

?

Optional

Set

Size/

Valid

Set

Lock

Set

selects

Yes

No

Read

Or

Write

?

Yes Yes

No No

*Read

Address Assign

Complete

?

Set

Read

Enable

Yes

Read

No

TID

Valid

? Yes

No

Data

Valid

? No

Yes

Store

Data

Store

RX TID

Parallel Data / TID Capture Process

Note: This continues until all data returns

*Note: The Data Transfer flow for

a Read has two components to it:

1.) Fetching the Data, and

2.) Receiving the Data.

This covers the case where

fetching is complete but capture is

still on-going.

Capture

Complete

?

No

Yes

Data

To be

Written

**Assign

Write

Data

Set

Write

Enable

F
ro

m
 T

ar
ge

t

T
o

T
ar

ge
t

T
o

T
ar

ge
t

T
o

T
ar

ge
t

T
o

T
ar

ge
t

T
o

T
ar

ge
t

Set

Data

T
o

T
ar

ge
t

Assign

TID(s)

?

Yes

No

**Assign

TID(s)

Optional

**Assign

Address

Command

Accept

?

Write

Stored

TX TIDs

Stored

TX TIDs

Set

TID /

Valid

T
o

T
ar

ge
t

Set

Address

T
o

T
ar

ge
t

F
ro

m
 T

ar
ge

t

***Transfer

Complete

?

Initiator Data Transfer Complete

Yes

No

Yes

No

Hold for

Cmd

Accept

Timer

Unset

Enables,

Selects,

Data, Size,

Address

Timeout

?

Optional

T
o

T
ar

ge
t

**Note: TID, Data, and Address assignment logic will

not be discussed here, and may depend on each other.

This is to be user specific.

***Note: Transfer Complete Decision will be based on

user definitions.

Optional

UnSet

Read

Enable

T
o

T
ar

ge
t

Optional

Note: Read enable is set during the

fetching of data, and is released at

the end of the last requested

address.

Figure 14 – Initiator Data and Control Transfer Flow Diagram

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 108

 Target Data Transfer Flow

Select/Address

Matches

Target

?

No

Yes

Is

Transfer

Locked

?

Yes

No

Monitor for

Higher

Priority

Message

Is

Higher

Priority

?

Yes

No

****Continuous parallel process

Accept

Command

?

F
ro

m
 In

iti
at

or

F
ro

m
 In

iti
at

or

UnSet

Command

Accept T
o

In
iti

at
or

*Hold for

Ready

*Note: Criterea for Ready is user defined.

Examples may be read/write throttle control,

Time Division Multiplexed Access, etc.

No

Yes

Read

Or

Write

Request

?

Set

Command

Accept

T
o

In
iti

at
or

***Transfer

Complete

?

ReadWriteStore

DATA

At Address

F
ro

m
 In

iti
at

or

Stored

Data

At Address

Fetch

Data

from

Address

F
ro

m
 In

iti
at

or

TID

Valid

?

Store

TX TID

**Assign

RX TID

Set

Data /

Valid

T
o

In
iti

at
or

Set

TID /

Valid

T
o

In
iti

at
or

F
ro

m
 In

iti
at

or

A

A

**Note: TID(s) Assignment process is left to user

implementation and is only depicted for conceptual

inference.Read Response Processing

B

B

Response

Complete

?

Optional

Yes

Yes

No

Target Data Transfer Complete

UnSet

TID/Valid

Data/Valid

T
o

In
iti

at
or

Yes

No

***Note: Transfer Complete depends upon

responding to all requested read data transfers for

Read Requests.

If it is a write transfer, then either dropping the

select or write enable may complete transaction.

****Note: This is to allow for a

bursted read from initiator to

proceed or be stalled, even if

read data is not yet available.

Note: It is assumed that a target transfer begins

and ends with Initiator Select signal (or Valid

Address) for a write. A read transfer may be

initiated with the select or valid address, but ends

with the completion of read data transfer.

No

****Note: This is not part of the standard but

captured for concept only. Here we depict a

scenario where implementor may wish to include

priority bus interruptions.Optional

Figure 15 – Target Data and Control Transfer Flow Diagram

D.1.2.3 MOCB Configuration Package

MOCB compliant platforms and waveforms will each define and provide a package file,

platform_pkg.vhd and waveform_pkg.vhd respectively, with MOCB defined constants. These are two

separate package files. Each package file will define the appropriate values for the respective Targets

and Initiators in the waveform and platform. The packages files consist of a common set of constants

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 109

used to customize the logic or reflect the configuration and requirements of the logic. The use of a

common set of constants across all waveform and platform applications will aid in porting from platform

to platform.

The determination of which are editable and which are not is left to the individual developers; waveform

and platform respectively. The designation of each can be commented or segregated in the package file

by the respective designers. In other words, the designer can create two sections in the package file. One

section that clearly states the following constants are allowed to be edited as well as what the acceptable

values are for each constant and another section clearly states the following are not to be edited.

D.1.2.3.1 MOCB Memory Map Configuration

The c_<name>_pStartAddr and the c_<name>_pMemsize constants identify the platform memory

map space in bytes. The c_<name>_wStartAddr and the c_<name>_wMemsize constants identify the

waveform memory map space in bytes. The memory allocation for the platform and waveform within a

single FPGA consist of a single continuous block of memory for the platform as well as the waveform.

Waveform memory allocations will not be interleaved with the platform memory allocation. Platforms

having multiple FPGA resources may choose to organize memory allocations based on physical

boundaries. For platforms allocating memory blocks based on physical boundaries, a starting address

and memsize constant should be declared for each memory space.

For platform with multiple FPGA resources, the memory mapping may be organized as a single

continuous block of memory for the platform and the waveform or each FPGA may be considered to

have a unique platform and waveform memory map allocation. This is to allow waveform and platform

memory allocations to be organized based on functional divisions (platform or waveform) or physical

resource boundaries. Within each physical FPGA boundary, the waveform memory allocations will not

be interleaved with the platform memory allocation. Examples are provided in Figure 16 and Figure 17.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 110

Platform

Memory

map

WFM

Memory

map

Figure 16 – Single FPGA Memory Map

Figure 16 illustrates the memory organization of a single FPGA. The platform and waveform are both

allocated a continuous block of memory.

Platform

Memory

map

WFM

FPGA 1

Memory

map

WFM

FPGA 2

Memory

map

Figure 17 – Multiple FPGA Single Platform Memory Allocation

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 111

Figure 17 illustrates a possible memory organization of a two FPGA platform. The platform and

waveform are both allocated a continuous block of memory. The waveform memory is divided into two

continuous blocks. One block is reserved for waveform space in each FPGA. The waveform memory

map is not interleaved between physical FPGA resources. Additionally, the platform memory map is not

interleaved in the waveform memory map. This allows the platform to perform only course memory map

decode. The arrangement may be useful for HW configurations that have a processor interface provided

to one FPGA and an interconnect bus provided between FPGAs. Waveform starting address and sizes

would need to be specified for each memory block in the package files.

Platform

FPGA 1

Memory

map

WFM

FPGA 2

Memory

map

WFM

FPGA 1

Memory

map

Platform

FPGA 2

Memory

map

FPGA 2

Memory

map

FPGA 1

Memory

map

Figure 18 – Multiple FPGA Split Platform Memory Allocation

Figure 18 illustrates a possible memory organization of a two FPGA platform. The platform and

waveform for each FPGA are organized into continuous blocks of memory. Neither the waveform nor

the platform memory map is interleaved between physical FPGA resources. Additionally, the waveform

and platform memory map are not interleaved within each physical FPGA. This allows the platform to

perform only course memory map decode. The arrangement may be useful for HW configurations that

have a processor interface(s) dedicated to each FPGA resource. All transactions for a particular FPGA

resource can be routed or selected by the processor based on physical boundaries. Platform and

waveform starting address and sizes would need to be specified for each memory block in the package

files.

Platform Package Constant

c_<name>_pStartAddr Identifies the starting address of the platform memory

map starting address

c_<name>_pMemsize Identifies the size of the platform memory space in bytes

Waveform Package Constant

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 112

c_<name>_wStartAddr (natural) Identifies the starting address of the each

waveform memory map starting address

c_<name>_wMemsize (natural) Identifies the size of the waveform memory

space in bytes for each memory allocation

D.1.2.3.2 Initiator Configurations

The Initiator configuration consists of a set of constants used to convey the physical configuration, the

functional capabilities, and the requirements of an Initiator. The platform and waveform package files

would need to create a set of constants for each Initiator it supplies.

D.1.2.3.2.1 Bus Configuration

Each package file will provide bus configuration for each Initiator provided. The configuration values

will be used to configure the logic if allowed or to build a transition layer for porting between Initiators

and Targets with incompatible configurations.

D.1.2.3.2.1.1 Initiator Event Bus Configuration

The Initiator event constant is used to specify number of event signals the Initiator can receive. If the

Target requires more event lines than the Initiator provides, a translation layer would need to be

constructed to provide the number of event lines required by the Target.

c_<name>_iEvents (natural) Number of Initiator accepted Event Lines

D.1.2.3.2.2 Clock Crossing Configuration

Each package file will provide clock crossing configuration information for each Initiator provided. The

configuration values will be used to configure the logic, if allowed, or to build a transition layer for

porting between Initiators and Targets with incompatible configurations.

D.1.2.3.2.2.1 Clock Crossing provided

The Initiator clock crossing constant is used to specify if the Initiator provides clock crossing logic to

match between Initiator and Target. This would be necessary if the Initiator was designed to operate

with an interface clock and the Target is required to operate off a separate waveform clock. To aid in

porting, the Initiator may choose to implement a clock crossing for the waveform. If the Initiator does

not provide clock crossing, the constant could be used to provide the platform configuration to a

configurable Target or a translation layer to provide the crossing.

c_<name>_iClkCross (boolean) Initiator Clk Crossing Provided

D.1.2.3.2.2.2 Clock Crossing Elastic Buffer

A common source clock crossing technique is to utilize an elastic buffer. If the Initiator does provide an

elastic buffer clock crossing, the elastic buffer depth may be used to specify the depth of the FIFO used

for the elastic buffer. The depth may need to change from waveform to waveform port to accommodate

varying clock frequencies between the Initiator and the Target. If the Initiator does not provide clock

crossing logic, the constant is not applicable to the Initiator configuration and maybe set to zero.

c_<name>_iElasticDepth (natural) Depth of elastic buffer

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 113

D.1.2.3.2.2.3 Initiator MOCB Clock Period

The Initiator MOCB clock Period constant is used to specify the period the Initiator operates in

picoseconds. This information may be used to calculate the required buffer size when crossing domains

with an elastic buffer.

iMClkPeriod_num and iMClkPeriod_dem specify the resolution of the MOCB clock period in

picoseconds. The definition involves specifying two separate values, the numerator and the denominator.

The result of dividing the numerator by the denominator should correspond to the MOCB clock period in

picoseconds. For example, a numerator of 1,000,000 and a denominator of 60 define a 60 MHz MOCB

Clock with a period of 16,666.666…. picoseconds. Expressing the resolution as a fraction minimizes

clock rounding errors for frequencies that cannot be expressed as a simple integer.

c_<name>_iMClkPeriod_num (natural) Initiator MOCB CLK Period numerator in picoseconds

c_<name>_iMClkPeriod_den (natural) Initiator MOCB CLK Period denominator in picoseconds

Note: Most PLL's use the numerator and denominator values as the way to define the clock being

generated.

D.1.2.3.2.3 Initiator Supported Extended Feature

The Initiator supported extended features constants are provided to identity what feature the Initiator

requires or supports.

D.1.2.3.2.3.1 Initiator Transaction IDs Support

The MOCB extended interface bus protocol provides the designer with the ability to “TAG” read

transfers with a unique transfer identification number (Tid). The intent of this feature is to provide the

application the ability to support out of order transfers. Transaction IDs are used by the waveform on

platforms that cannot guarantee data is returned in the order it was requested. Waveforms initially

developed for platforms that could not guarantee the order of returned data may require the TIDS

functionality even on platforms that can guarantee the order. The Initiator TIDs support constant

indicates if the Initiator requires transaction ID support. If the Initiator requires TIDS support and the

Target do not provide it, a translation layer would need to be added to loop back the TIDS to the Initiator.

The TID support constant could be used by the Target or a translation layer to configure the logic to

provide the Initiator the needed TIDs support.

c_<name>_iTids (boolean) Initiator Requires TIDS Support

D.1.2.3.2.3.2 Initiator Maximum Transaction Transfer Depth

The Initiator max transfer depth constant conveys to the Target or the translation logic the maximum

length of transfers. The depth may be required if the Target does not support TIDS and needs to loop the

TID number back to the Target upon a data return. It may also be used if the Initiator does not support

the size field required by the target. The translation logic may use the Max transfer depth to size the

buffer required to determine the size of individual transfers.

 c_<name>_iXferMax (natural) Maximum Length of Transfers

D.1.2.3.2.3.3 Initiator Transfer Size

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 114

The MOCB extended interface bus protocol provides the designer with the option to utilize the SIZE

field of the interface. The intent of this field is to advertise the size of the transfer in advance to allow a

DMA to be set up to handle the transfer or to form a data packet header for a push packet interface. This

reduces the need for the Target to buffer the entire transfer in order to determine the size.

The Initiator size field indicates if the Initiator supports the Size feature of the standard. If the Initiator

supports the size, but the Target does not require it, no translation is necessary.

c_<name>_iSize (boolean) Initiator Provides Size field

D.1.2.3.2.3.4 Initiator Command Accept Support

The MOCB extended interface bus protocol provides the designer the capability of utilizing the

Command Accept signal for both bus arbitration and data throttling (flow Control). The Target can use

the signal to grant access to the bus as well as throttle the data transfer.

The “command accept” support constant indicates if the Initiator requires support of the command

accept. If the Initiator requires the command accept function and the Target does not support it, the

constant can be used by the Target or a translation layer to drive the signal to a constant logic ‘1’.

c_<name>_iCmdA (boolean) Initiator Requires

Command accept

D.1.2.3.2.3.5 Initiator Data Accept Support

The MOCB extended interface bus protocol provides the designer the capability to throttle or hold off the

return data from the Target by utilizing the Data Accept (DataA). The data accept is implemented to

allow the designer to stall the return of data from the Target.

The Data accept support constant indicates if the Initiator requires support for the “Data Accept” feature.

If the Initiator requires the “Data Accept” function and the Target do not support it, the constant can be

used by the Target or a translation layer to buffer data transfers until the Initiator can accept them. The

max transaction transfer depth could be used in conjunction to determine the size of the buffer.

c_<name>_iDataA (boolean) Initiator Utilizes Data Accept

D.1.2.3.2.3.6 Initiator Lock Support

The MOCB extended interface bus protocol provides the designer with the option to incorporate a LOCK

feature. The Lock signal indicates to the Target arbiter that the Initiator needs to retain ownership of the

bus during a transfer as well as between transfers.

The Data accept support constant indicates if the Initiator requires support of the transfer lock. If the

Initiator requires the transfer lock function and the Target do not support it, translation layer logic may be

needed to provide the lock function.

c_<name>_iLock (boolean) Initiator Provides Lock Support

D.1.2.3.3 Target Configuration

Each package file will provide bus configuration for each Target provided. The configuration values will

be used to configure the logic, if allowed, or to build a transition layer for porting between Initiators and

Targets with incompatible configurations.

D.1.2.3.3.1 Target Event Bus Configuration

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 115

The Target event constant is used to specify number of event signals the Target provides. If the initiator

does not support the required number of event lines, a translation layer would need to be constructed to

provide the number of event lines required by the Target.

c_<name>_tEvents (natural) Number of Target provided Event Lines

D.1.2.3.4 Target Clock Crossing Configuration

Each package file will provide clock crossing configuration information for each Target provided. The

configuration values will be used to configure the logic, if allowed, or to build a transition layer for

porting between Initiators and Targets with incompatible configurations.

D.1.2.3.4.1 Clock Crossing provided

The Target clock crossing constant is used to specify if the Target provides clock crossing logic to match

between Initiator and Target. This would be necessary if the Initiator was designed to operate with an

interface clock and the Target is required to operate off of a separate waveform clock. To aid in porting,

the Target may choose to use implement a clock crossing for the waveform. If the Target does not

provide clock crossing, the constant could be used to provide the target configuration to a configurable

Initiator or a translation layer to provide the crossing.

c_<name>_tClkCross (boolean) Target Clk Crossing Provided

D.1.2.3.4.2 Target Clock Crossing Elastic Buffer

A common source clock crossing technique is to utilize an elastic buffer. If the Target does provide an

elastic buffer clock crossing, the elastic buffer depth may be used to specify the depth of the FIFO used

for the elastic buffer. The depth may need to change from platform to platform port to accommodate

varying clock frequencies between the Initiator and the Target. If the Target does not provide clock

crossing logic, the constant is not applicable to the Target configuration and maybe set to zero.

c_<name>_tElasticDepth (natural) Target Depth of elastic buffer depth

D.1.2.3.4.3 Target MOCB Clock Period

The Target MOCB clock Period constant is used to specify the period the Target operates in picoseconds.

This information may be used to calculate the required buffer size when crossing domains with an elastic

buffer.

tMClkPeriod_num and tMClkPeriod_dem specify the resolution of the MOCB clock period in

picoseconds. The definition involves specifying two separate values, the numerator and the denominator.

The result of dividing the numerator by the denominator should correspond to the MOCB clock period in

picoseconds. For example, a numerator of 1,000,000 and a denominator of 60 define a 60 MHz MOCB

Clock with a period of 16,666.666…. picoseconds. Expressing the resolution as a fraction minimizes

clock rounding errors for frequencies that cannot be expressed as a simple integer.

c_<name>_tMClkPeriod_num (natural) Target MOCB CLK Period numerator in picoseconds

c_<name>_tMClkPeriod_den (natural) Target MOCB CLK Period denominator in picoseconds

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 116

D.1.2.3.5 Target Supported Extended Feature

The Target supported extended features constants are provided to identity what feature the Target

requires or supports.

D.1.2.3.5.1 Target Transaction IDs Support

The MOCB extended interface bus protocol provides the designer with the ability to “TAG” read

transfers with a unique transfer identification number (Tid). The intent of this feature is to provide the

application the ability to support out of order transfers. Transaction IDs are used by the waveform on

platforms that cannot guarantee data is returned in the order it was requested. Waveforms initially

developed for platforms that could not guarantee the order of returned data may require the TIDS

functionality even on platforms that can guarantee the order. The Target TIDs support constant indicates

if the Target supports transaction ID’s. If the Initiator requires TIDS support and the Target do not

provide it, a translation layer would need to be added to loop back the TIDS to the Initiator. The TID

support constant could be used by the Initiator or a translation layer to configure the logic to provide the

Initiator the needed TIDs support.

c_<name>_tTids (boolean) Target Requires TIDS Support

D.1.2.3.5.2 Target Transfer Size

The MOCB extended interface bus protocol provides the designer with the option to utilize the SIZE

field of the interface. The intent of this field is to advertise the size of the transfer in advance to allow a

DMA to be set up to handle the transfer or to form a data packet header for a push packet interface. This

reduces the need to buffer transfer to determine the size.

The Target size field indicates if the Target requires the Size feature of the standard. If the Initiator

supports the size, but the Target does not require it, no translation is necessary. In cases where the target

requires a “Size” field, such as abstracting a serial push packet interface and the Initiator does not

support it, a translation layer would be required to buffer the transfer and determine the size. The

c_<name>_iXferMax constant may be used to size the buffer.

c_<name>_tSize (boolean) Target utilizes Size field

D.1.2.3.5.3 Target Command Accept Support

The MOCB extended interface bus protocol provides the designer the capability of utilizing the

Command Accept signal for both bus arbitration and data throttling (flow Control). The Target can use

the signal to grant access to the bus as well as throttle the data transfer.

The “Command Accept” support constant indicates if the Target supports the “Command Accept”. If the

Initiator requires the command accept function and the Target does not support it, the constant can be

used by the Target or a translation layer to drive the signal to a constant logic ‘1’.

c_<name>_tCmdA (boolean) Target Supports Command accept

D.1.2.3.5.4 Target Data Accept Support

The MOCB extended interface bus protocol provides the designer the capability to throttle or hold off the

return data from the Target by utilizing the Data Accept (DataA). The data accept is implemented to

allow the designer to stall the return of data from the Target.

The Data accept support constant indicates if the Target supports the data accept feature. If the Initiator

requires the “data accept” function and the Target does not support it, the constant can be used by the

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 117

Initiator or a translation layer to buffer data transfers until the Initiator can accept them. The max

transaction transfer depth could be used in conjunction to determine the size of the buffer.

c_<name>_tDataA (boolean) Target Provides Data Accept support

D.1.2.3.5.5 Target Lock Support

The MOCB extended interface bus protocol provides the designer with the option to incorporate a LOCK

feature. The Lock signal indicates to the Target arbiter that the Initiator needs to retain ownership of the

bus during a transfer as well as between transfers.

The Data accept support constant indicates if the Target provides support of the transfer lock. If the

Initiator requires the transfer lock function and the Target do not support it, translation layer logic may be

needed to provide the lock function.

constant c_<name>_tLock Initiator Provides Lock Support

D.1.2.3.5.6 Target Data Valid Latency

The Target Data Valid Latency constant is used to convey to the designers the typical latency associated

with a particular interface. This may be required when interfacing to an external RAM where internal

buffering or pre-fetching may be necessary if the latency is too high. The latency count would be based

on the MOCB target CLK frequency.

c_<name>_tDataVLat Target Data Valid Cycle Latency

D.1.2.4 Translation Layer

When porting a waveform to an individual platform, there may be instances where the supported features

or required features of a platform and waveform do not align. If the platform and waveform have not

provided the needed functionality or configurability, a translation layer may be required to provide a

bridge between the platform and waveform logic. The creation of the translation logic is considered part

of the porting exercise. The translation layer may also be provided by the platform for the waveform

development team to aid in future porting, but it is not required.

Figure 19 illustrates an example of a translation layer created between a platform MOCB interface and a

waveform MOCB interface.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 118

MOCB Porting

Adaptor

MOCB Platform\WF

Translation Layer

PMOCBI_<name>_Addr[m:0]

PMOCBI_<name>_Data[(8*2^n)-1: 0]

PMOCB CLK

PMOCBI_<name>_SEL[p:0]

PMOCB Reset

PMOCBT_<name>_Event[q:0]

PMOCBI_<name>_WR_EN

PMOCBT_<name>_Data[(8*2^n)-1: 0]

PMOCBT_,<name>_DataV

PMOCBI_<name>_RD_EN

PMOCBI_<name>_Byte_En[t:0]

PMOCBI_<name>_TidV

PMOCBI_<name>_Tid[r:0]

PMOCBT_<name>_TidV

PMOCBT_<name>_Tid[r:0]

PMOCBT_<name>_CmdA

PMOCBI_<name>_Lock

PMOCBI_<name>_Size[s:0]

PMOCBI_<name>_SizeV

PMOCB

PMOCBI_<name>_DataA

WMOCBI_<name>_Addr [m:0]

WMOCBI_<name>_Data[(8*2^n)-1: 0]

 WMOCB CLK

WMOCBI_<name>_SEL[p:0]

WMOCB Reset

WMOCBT_<name>_Event[q:0]

WMOCBI_<name>_Byte_En

WMOCBI_<name>_WR_EN

WMOCBT_<name>_Data[(8*2^n)-1: 0]

WMOCBI_<name>_RD_EN

WMOCBT_<name>_DataV

WMOCBI_<name>_TidV

WMOCBI_<name>_Tid[r:0]

WMOCBT_<name>_TidV

WMOCBT_<name>_Tid[r:0]

WMOCBT_<name>_CmdA

WMOCBI_<name>_Lock

WMOCBI_<name>_Size[s:0]

WMOCBI_<name>_SizeV

WMOCBI_<name>_DataA

WMOCB

Figure 19 – Example MOCB Interconnect Translation Layer

D.1.2.5 MOCB FPGA Timing

The timing diagrams are intended to show the relationship between various signals and features. They

are not intended to encompass every possible bus scenario or configuration. The MOCB implementation

is not limited to those illustrated in this document. The MOCB protocol is limited by the signals

relationships spelled out in this document and timing diagrams.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 119

D.1.2.5.1 Basic burst Write, no flow control, No Tids, No Lock, No Size

Initiator
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBI_<name>_Event[q:0]

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

Target
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBI_<name>_Event[q:0]

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

MOCB

Required

Basic

Interface

Signals

Basic

Interface

Signals

Figure 20 – Basic Burst Write

The timing diagram in Figure 21 illustrates a simple Burst Write transfer from an Initiator block to a

Target block.

1 2 3 4 5 6

A1 A2 A3 A4

D1 D2 D3 D4

0ns 50ns 100ns 150ns 200ns 250ns

MOCB_<name>_CLK

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data

Figure 21 – Basic Burst Write

Sequences

1) On cycle 2, the Initiator starts the transfer by setting the write enable (WR_EN) and presenting

valid address (A1) and data (D1). Since this implementation does not incorporate any flow

control handshaking, the Initiator can assume the Address, data and control signals are captured

on the next rising edge clock.

2) The Target will capture the address, data and control signals on each clock cycle and use them

internally to perform the write.

3) The Initiator presents a new transfer on each subsequent clock cycle until the transfer is

complete.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 120

D.1.2.5.2 Basic burst Write with Size, no flow control, No Tids, No Lock

Initiator
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBI_<name>_Event[q:0]

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

Target
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBI_<name>_Event[q:0]

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

MOCB

Required

Basic

Interface

Signals

MOCBI_<name>_SEL[p:0] MOCBI_<name>_SEL[p:0]Optional

Basic

Signals

MOCBI_<name>_Size[s:0]

MOCBI_<name>_SizeV

Extended

Interface

Signals

MOCBI_<name>_Size[s:0]

MOCBI_<name>_SizeV

Basic

Interface

Signals

Figure 22 – Basic Burst Write w/Size

The timing diagram in Figure 23 illustrates a simple Burst Write transfer from an Initiator block to a

Target block using the transfer size field (Size/SizeV). The intent of this field is to advertise the size of

the transfer in advance to allow a DMA to be set up to handle the transfer or to form a data packet for a

push packet interface. This reduces the need to buffer transfer to determine the size.

1 2 3 4 5 6 7 8 9 10 11 12

A1 B1 B2 B3 B4

4 4

D1 D2 D3 D4 D5 D6 D7 D8

0ns 250ns 500ns

MOCB_<name>_CLK

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_SEL[p:0]

MOCBI_<name>_SizeV

MOCBI_<name>_Size[s:0]

MOCBI_<name>_Data

Figure 23 – Basic Burst Write w/Size

Sequences

1) On cycle 2, the Initiator starts the transfer by setting the write enable (WR_EN) and presenting

valid address (A1), data (D1), and transfer size (Size). Since this implementation does not

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 121

incorporate any access control handshaking, the Initiator can assume the Address, data and

control signals are captured on the next rising edge clock.

2) The Target will capture the address, data and control signals on each clock cycle and use them

internally to perform the write. The Target may use the Size field to form a packet header or

allocate space in memory

3) The Initiator presents a new command on each subsequent clock cycle until the entire transfer is

complete. For this example, the Initiator is writing to single address 4 times. This could

represent a write to a FIFO or a packet based interfaces memory mapped to Address A1.

4) On cycle 8, the Initiator begins a second burst transfer. The Initiator starts the transfer by setting

the write enable (WR_EN) and presenting valid address (A1), data (D1), and transfer size (Size).

5) The Target will capture the address, data and control signals and use them internally to perform

the write.

6) The Initiator presents a new transfer on each subsequent clock cycle until the transfer is

complete. For this example, the Initiator is writing to a different address on each cycle.

D.1.2.5.3 Basic Read with no flow control, No Tids, No Lock

Initiator
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBI_<name>_Event[q:0]

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

Target
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBI_<name>_Event[q:0]

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

MOCB

Required

Basic

Interface

Signals

Basic

Interface

Signals

Figure 24 – Basic Read

The timing diagram in Figure 25 is a simple Read transfer from an Initiator block to a Target block.

This example illustrates a pipelined burst read with delayed data return. It is meant to illustrate a

pipelined read with two different pipeline depths. The Data D3 and D4 take an extra cycle to return. The

standard handles this with the use of a data valid line to indicate when data is valid on the bus. It is

assumed in the example that data is being returned in order from a single Target and no backpressure is

needed to hold off the data return. The target would be responsible for avoiding internal collisions and

ordering the returned data. The data accept signal is driven active though the entire transfer. This is

common for initiators with no requirements to throttle the return of data from the target. For

implementation where there are no requirements to throttle the flow of data from the target to the

initiator, the DataA signals is driven to a logical active state (‘1’) continuously.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 122

1 2 3 4 5 6 7 8 9 10

A1 A2 A3 A4

D1 D2 D3 D4

0ns 100ns 200ns 300ns 400ns

MOCB_<name>_CLK

_RD_En><nameMOCBI_

_WR_En><nameMOCBI_

Addr[m:0]><nameMOCBI

DataV><nameMOCBT

Data><nameMOCBT

DataA><nameMOCBI

Figure 25 – Basic Read

Sequences

1) On cycle 2, the Initiator starts the transfer by setting the read enable (RD_EN) and presenting

valid address (A1), Since this implementation does not incorporate any flow control

handshaking, the Initiator can assume the address and control signals are captured on the next

rising edge clock.

2) The Target will capture the address and control signals on each clock and use them internally to

perform the read.

3) The Initiator presents a new transfer on each subsequent clock cycle until the transfer is

complete.

4) On cycle 5, the Target begins to return the data from the read. The data is returned in the order it

was requested. The data is qualified valid by the data valid line (DataV).

5) The Data accept (DataA) is driven high through the entire transfer indicating the Initiator is

capable of receiving data presented by the Target.

6) On cycle 7, the Target invalidates the DataV signals indicating to the Initiator there is no valid

Data on the bus.

7) On Cycle 8, the Target resumes transfer of the requested read data by presenting the data and

data valid.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 123

D.1.2.5.4 Basic Read with Return Data Flow Control, No Tids, No Lock

Initiator
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBI_<name>_Event[q:0]

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

Target
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBI_<name>_Event[q:0]

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

MOCB

Required

Basic

Interface

Signals

MOCBI_<name>_SEL[p:0] MOCBI_<name>_SEL[p:0]Optional

Basic

Signals

MOCBT_<name>_CmdAExtended

Interface

Signals

MOCBT_<name>_CmdA

Basic

Interface

Signals

Figure 26 – Basic Read with Data Accept

The timing diagram in Figure 27 is a basic Read transfer from a single Initiator block to two different

Target blocks. The standard handles this with the use of a data valid (DataV), data accept (DataA), and

command accept (CmdA) signals to indicate when data is valid on the target data bus, data has been

accepted by the Initiator, and a command can be accepted by the Target. The data return accept function

must be used in conjunction with the command accept function. When the initiator stalls the return data

pipeline, the target must stall the command pipeline to keep from over running the target with commands

it cannot service. The intent is that the target merely stalls its command and data pipeline rather than be

forced to store commands internally until the data can be returned to the initiator. The pipeline itself

becomes the storage elements and can be used to store in flight commands. This example illustrates a

scenario where the target blocks have different pipelined depths resulting in a data return collision. The

Data D1, D2 and D3 from Target 1 take an extra cycle to return. When a data return is stalled, the data

from target 2 and the command from the initiator for target 2 are stalled until target 1 has completed its

data return and released its data valid. Data from Target 2 is then accepted by the initiator by driving the

data accept for target 2 active. The target then releases the command accept allowing the transfer to

complete. In this example, it is assumed that the data is returned in order eliminating the need to

incorporated Tids.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 124

1 2 3 4 5 6 7 8 9 10 11 12 13

A1 A2 A3 A4 A5

D1 D2 D3

D4 D5

0ns 250ns 500ns

MOCB_<name>_CLK

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_TARGET1_SEL[p:0]

MOCBI_TARGET2_SEL[p:0]

MOCBI_<name>_Addr [m:0]

MOCBT_TARGET1_CmdA

MOCBT_TARGET2_CmdA

MOCBT_TARGET1_DataV

MOCBI_TARGET1_DataA

MOCBT_TARGET1_Data

MOCBT_TARGET2_DataV

MOCBI_TARGET2_DataA

MOCBT_TARGET2_Data

Figure 27 – Basic Read with Return Data Flow Control

Sequences

1) On cycle 2, the Initiator starts the transfer to target 1 by setting the read enable (RD_EN) and

presenting valid address (A1), and the Address select for target1. Since this implementation

utilizes the command accept for flow control and does not incorporate any arbitration

handshaking, the address and control signals are captured on the next rising edge clock.

2) The Initiator presents a new transfer on each subsequent clock cycle until the transfer to target 1

is complete.

3) On cycle 5, the Initiator starts the transfer to target 2 by setting the read enable (RD_EN) and

presenting valid address (A4), and the Address select for target 2. Since this implementation

utilizes the command Accept for flow control and does not incorporate any arbitration

handshaking, the address and control signals are captured on the next rising edge clock.

4) The Initiator presents a new transfer on each subsequent clock cycle until the transfer is

complete.

5) The Targets will capture the address and control signals on each clock and use them internally to

perform the read.

6) On cycle 4, the Target 1 presents return data from the read command. The data is returned in the

order it was requested. The data is qualified valid by the data valid line (DataV). The data is

held until the data accept line is active indicating that data has been captured from the bus.

7) On cycle 5, the data accept signal for target 1is set indicating to the target that the data has been

captured.

8) On cycle 6, the Target 2 presents return the data from the read. The data is qualified valid by

the data valid line (DataV). The data is held on the bus because the data accept (DataA) for

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 125

target 2 is inactive indicating to the Target that the data was not captured by the initiator. Data

will be held until the initiator drives the data accept signal. The target must stall the return and

command pipeline.

9) Cycle 6, the Target stalls the Initiator commands by driving the command accept inactive. This

effectively stalls the entire round trip pipeline until the initiator is able to accept the pending

return data.

10) On cycle 8, target 1 releases its data valid indicating that there is no valid data on the bus to

capture.

11) Cycle 9, the initiator release the data accept for target 1 and sets the data accept for target 2

indicating that the pending data for target 2 has been accepted.

12) Cycle 9, the target will drive the command accept active indicating that the current command has

been captured.

13) On cycle 11, target 2 releases its data valid indicating that its data return transfer is complete.

D.1.2.5.5 Write Command with Command Flow control, No Tids, No Lock

Initiator
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBI_<name>_Event[q:0]

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

Target
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBI_<name>_Event[q:0]

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

MOCB

Required

Basic

Interface

Signals

MOCBI_<name>_SEL[p:0] MOCBI_<name>_SEL[p:0]Optional

Basic

Signals

MOCBT_<name>_CmdAExtended

Interface

Signals

MOCBT_<name>_CmdA

Basic

Interface

Signals

Figure 28 – Write Command with Command Flow Control

The timing diagram in Figure 28 illustrates a Write transfer from an Initiator block to a Target block

utilizing Command only flow control. In this example, the Target is using the command flow control

signal (CmdA) to throttle the data transfer. This example is only throttling data from the Initiator and the

Target. This scenario may be common when attaching to a push packet interface. The intent of this

feature in this example is to throttle the flow of data between the core and an interface of lower

bandwidth. This feature is also intended to provide the capability of allowing an Initiator to request

access to bus and allow the Target, with support of an arbiter, to grant access. That feature is illustrated

in later examples.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 126

1 2 3 4 5 6 7 8 9 10 11

A1 A2 A3 A4

D1 D2 D3 D4

0ns 100ns 200ns 300ns 400ns 500ns

MOCB_<name>_CLK

MOCBI_<name>_RD_EN

MOCBT_<name>_CmdA

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_SEL[p:0]

MOCBI_<name>_Data

Figure 29 – Write Command with Flow Control

Sequences

1) On cycle 2, the Initiator starts the transfer by setting the write enable (WR_EN) and presenting

valid address (A1) and address select (SEL). Since this implementation utilizes the command

flow control handshaking for data throttling only (as indicated by the CmdA line being active

before the write enable is set), the Initiator can assume the address and control signals are

captured on the next rising edge clock.

2) The Target will capture the address, data, and control signals on each clock cycle and use them

internally to perform the write.

3) The Initiator presents a new transfer on each subsequent clock cycle until the transfer is complete

4) On cycle 4, the Target drives the command accept (CmdA) inactive indicating that it did not

accept the current transfer on the bus. The Initiator holds the current command until the Target

accepts the command.

5) Cycle 5 the Target drives the CmdA active indicating the current command has been accepted.

6) On Cycle 7, the Initiator releases the valid write enable indicating that the current transfer is

complete.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 127

D.1.2.5.6 Read /Write Command with Access control and Lock, No Tids

Initiator
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBI_<name>_Event[q:0]

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

Target
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBI_<name>_Event[q:0]

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

MOCB

Required

Basic

Interface

Signals

MOCBI_<name>_SEL[p:0] MOCBI_<name>_SEL[p:0]Optional

Basic

Signals

MOCBI_<name>_Lock

MOCBT_<name>_CmdA

Extended

Interface

Signals

MOCBI_<name>_Lock

MOCBT_<name>_CmdA

Basic

Interface

Signals

Figure 30 – Read/Write with Access Control and Lock

The timing diagram in Figure 31 illustrates a Read transfer followed by a Write from an Initiator block

to a single Target block utilizing Access control. In this example, the Target is using the Access control

signal (CmdA) to grant access only. The intent of this feature is to provide the capability of allowing an

Initiator to request access to a bus and allow the Target, with support of an arbiter, to grant access. The

command accept is also utilized to throttle the flow of data across target interfaces with different

bandwidths as illustrated in the flow control examples. This implementation does not implement flow

control and therefore does not implement the data accept signal. This example does utilize a Lock signal

to indicate to the Target arbiter that the Initiator needs to retain ownership of the bus during a transfer as

well as between transfers. This prevents the Target from granting access to a higher priority transfer

during the current transfer or from giving ownership of the bus to another requester between transfers. In

the example the Initiator performs 2 generic reads (A1, A2) followed by a read modify write (A3, A4).

The initiator sets the lock at the beginning of A3. The arbiter does not accept the A3 transfer and grants

access to a higher priority transfer before returning access to the Initiator. Since the transfer had not

begun when the lock was set, the Target was free to remove access even though the lock was set. Once

the first transfer is accepted from the initiator when the lock is set, the Target is prohibited from

removing access and granting access to a higher priority requester. The data accept signal is driven

active though the entire transfer. This is common for initiators with no requirements to throttle the return

of data from the target. For implementation where there are no requirements to throttle the flow of data

from the target to the initiator, the DataA signals is driven to a logical active state (‘1’) continuously.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 128

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A1 A2 A3 A4 A3 A4

RD1 RD2 RD3 RD4

WD3 WD4

0ns 250ns 500ns

MOCB_<name>_CLK

Lock><nameMOCBI

_RD_En><nameMOCBI_

_WR_En><nameMOCBI_

CmdA><nameMOCBT

Addr[m:0]><nameMOCBI

SEL[p:0]><nameMOCBI

DataV><nameMOCBT

DataA><nameMOCBI

Data><nameMOCBT

Data><nameMOCBI

Figure 31 – Read/Write with Access Control and Lock

Sequences

1) On cycle 2, the Initiator requests a transfer by setting the read enable (RD_EN), valid address

(A1), and address select (SEL). These signals are held active until the Target indicates the

command has been accepted

2) On cycle 3, the Target signals the Initiator that the command has been accepted driving the

command accept signal (CmdA) valid. The Target will capture the address and control signals

on each clock cycle and use them internally to perform the read.

3) The Initiator presents a new transfer on each subsequent clock cycle until the transfer in

complete

4) On cycle 5, the Target drives the command accept (CmdA) inactive indicating that it did not

accept the current transfer on the bus. The Initiator holds the current command until the Target

accepts the command.

5) On cycle 5, the Initiator requests a lock transfer by setting the “LOCK” signal. By setting the

LOCK signal, the Initiator is signaling the Target that this will be a locked transfer. This

indicates to the Target that the initiator requires maintained ownership of the bus until the lock is

released.

6) Cycle 6 the Target drives the CmdA active indicating the current command has been accepted.

7) On cycle 6, the Target begins to return the data from the read. The data is returned in the order it

was requested. The data is qualified valid by the data valid line (DataV).

8) The Data accept (DataA) is driven high through the entire transfer indicating the Initiator is

capable of receiving data presented by the Target.

9) On cycle 8, the Target invalidates the DataV signals indicating to the Initiator there is no valid

Data on the bus.

10) On Cycle 9, the Target resumes transfer of the requested read data by presenting the data and

data valid

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 129

11) The Initiator completes first transfer block on Cycle 8 and the drives the read enable and write

enable signals invalid, but maintains the Lock signal. This indicates to the Target that the

Initiator has not completed all intended transfers and requires continued ownership of the bus.

The Target maintains the CmdA active indicating that bus ownership is granted and more

transfers can be accepted.

12) On cycle 11, the Initiator starts the Write transfer by setting the write enable (WR_EN) and

presenting valid address (A3), address select (SEL) and data (WD3). Since the CmdA line is

already active, the Initiator can assume the Address, data and control signals are captured on the

next rising edge.

13) The Target will capture the address, data and control signals and use them internally to perform

the write.

14) The Initiator presents a new transfer on each subsequent clock cycle until the transfer is

complete.

15) The Target will capture the transfer on each clock cycle and perform the write.

16) Cycle 13, the transfer is complete and the Initiator releases the write enable and Lock, indicating

to the Target that it is done with all current transfers and the bus can be granted to another user.

17) Cycle 14, the Target removes the CmdA line indicating that the Initiator no longer has ownership

of the bus.

D.1.2.5.7 Write/Read Command with Access control and Tids, No Lock

Initiator
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

Target
MOCB_<name>_CLK

MOCB_<name>_Reset

MOCBI_<name>_RD_EN

MOCBI_<name>_WR_EN

MOCBI_<name>_Addr [m:0]

MOCBI_<name>_Data[(8*2^n)-1: 0]

MOCBI_<name>_DataA

MOCBT_<name>_Data[(8*2^n)-1: 0]

MOCBT_<name>_DataV

MOCBT_<name>_InvalidAddr

MOCB

Required

Basic

Interface

Signals
MOCBI_<name>_Event[q:0] MOCBI_<name>_Event[q:0]

MOCBI_<name>_SEL[p:0] MOCBI_<name>_SEL[p:0]Optional

Basic

Signals

MOCBI_<name>_TidV

MOCBI_<name>_Tid[r:0]

MOCBT_<name>_CmdA

MOCBT_<name>_TidV

MOCBT_<name>_Tid[r:0]

Extended

Interface

Signals

MOCBI_<name>_TidV

MOCBI_<name>_Tid[r:0]

MOCBT_<name>_CmdA

MOCBT_<name>_TidV

MOCBT_<name>_Tid[r:0]

Basic

Interface

Signals

Figure 32 – Write/Read with Access Control and Tid

The timing diagram in Figure 33 illustrates a Write transfer followed by a Read from an Initiator block

to a Target block utilizing Access control and transaction Identification (Tids). In this example, it is

assumed that there is a single Target and that the Target is using the access control signals to grant access

to the bus. The intent of this feature is to provide the capability of allowing an Initiator to request access

to a bus and allow the Target, with support of an arbiter, to grant access. The command accept is also

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 130

utilized to throttle the flow of data across target interfaces with different bandwidths as illustrated in the

flow control examples. This implementation does not implement flow control and therefore does not

implement the data accept signal. This example also utilizes a Transaction ID (Tids) signals to provide

the application the ability to support out of order transfers. In some platform applications, it is difficult

to guarantee multiple read transfers to multi sinks, even when flowed through a single Target interface,

will be returned in the order they were requested. This is especially true for high-speed push packet

interfaces such as Ethernet. Providing Transaction IDs enables the application to tag a transfer with a

unique ID that will be returned with the data and used to inform the Initiator what transaction the data is

associated with. The data accept signal is driven active though the entire transfer. This is common for

initiators with no requirements to throttle the return of data from the target. For implementation where

there are no requirements to throttle the flow of data from the target to the initiator, the DataA signals is

driven to a logical active state (‘1’) continuously.

1 2 3 4 5 6 7 8 9 10 11 12 13

A1 A2 A3 A4 A5 A6 A7

T1 T2 T3

T2 T1 T3

RD4 RD3 RD5 RD6 RD7

WD1 WD2

0ns 250ns 500ns

MOCB_<name>_CLK

_WR_En><nameMOCBI_

_RD_En><nameMOCBI_

CmdA><nameMOCBT

Addr[m:0]><nameMOCBI

SEL[p:0]><nameMOCBI

TidV><nameMOCBI

Tid[r:0]><nameMOCBI

TidV><nameMOCBT

Tid><nameMOCBT

DataV><nameMOCBT

DataA><nameMOCBI

Data><nameMOCBT

Data><nameMOCBI

Figure 33 – Write/Read with Access Control and Tids

Sequences

1) On cycle 2, the Initiator requests a transfer by setting the write enable (WR_EN) as well as

presenting valid address (A1) and data (WD1). These signals are held active until the Target

indicates the command has been accepted.

2) On cycle 3, the Target signals the Initiator that the command has been accepted driving the

command accept signal (CmdA) valid.

3) The Target will capture the address, data, and control signals on each clock and use them

internally to perform the write.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 131

4) The Initiator presents a new transfer on each subsequent clock cycle until the transfer is

complete.

5) On cycle 5, the Initiator starts a read transfer by driving the write enable (WR_EN) invalid and

the read enable valid (RD_EN). In this example, the Initiator is tagging the transfer with a

transfer ID (Tid). The Tid field is set as well as the TidV to qualify the transfer as a tagged

transfer. It is assumed that read transfer T1 may be returned out of order with respect to the

other read transfer IDs.

6) Cycle 6, the Initiator tags the transfer with a new unique Transfer ID (T2). It is assumed that

read transfer T2 may be returned out of order with respect to the other read transfer IDs.

7) Cycle 7, the Initiator tags the transfer with a new unique Transfer ID. It is assumed that read

transfer(s) T3 may returned out of order with respect to the other read transfer IDs. T1 and T2.

The three read transfers within the T3 transfer ID must be returned in order with respect to each

other.

8) Cycle 7 the Target drives the command accept (CmdA) inactive indicating that it did not accept

the current transfer on the bus. The Initiator holds the current command until the Target accepts

the command. This may be done to temporarily grant access to a higher priority transfer.

9) Cycle 7, the Target begins to return the data from the read. The data is returned with a transfer

ID (Tid) and a TidV qualifying the transfer as from a tagged transfer. The data is qualified valid

by the data valid line (DataV). On this example, the T2 transfer is returned out of order with

respect to the T1 transfer.

10) The Data accept (DataA) is driven high through the entire transfer indicating the Initiator is

capable of receiving data presented by the Target.

11) Cycle 8, the Target returns the T1 data from the read command. The data is returned with a

transfer ID (Tid) and a TidV qualifying the transfer as from a tagged transfer. The data is

qualified valid by the data valid line (DataV). On this example, the T1 transfer is returned out of

order with respect to the T2 transfer.

12) Cycle 8 the Target drives the CmdA active indicating the current command has been accepted.

13) Cycle 9, 10 the Initiator drives the remaining read commands. The Tid field is held constant

during for each transfer. This indicates to the Target that the T3 transfers must maintain order

with respect to the A5, A6, and A7 transfers, but may be out of order with respect to transfer T1

and T2.

14) Cycle 9, the Target invalidates the DataV signals indicating to the Initiator there is no valid Data

on the bus.

15) On Cycle 10-12, the Target resumes transfer of the requested read data by presenting the data

(Data), data valid (DataV), Transaction ID (Tid), and Transaction ID Valid (TidV)

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 132

D.1.3 Referenced Documents

The following documents of the exact issue shown form a part of this specification to the extent specified

herein.

D.1.3.1 Government Documents

The following documents are part of this specification as specified herein.

D.1.3.1.1 Specifications

D.1.3.1.1.1 Federal Specifications

None

D.1.3.1.1.2 Military Specifications

None

D.1.3.1.1.3 Other Government Agency Documents

See section A.1.3.1.1.3.

D.2 SERVICES

Not applicable

D.3 SERVICE PRIMITIVES AND ATTRIBUTES

Not applicable

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 133

D.4 DEFINITIONS

D.4.1 Entity Definitions

D.4.1.1 Target Entity Description
--

-- MHAL ON CHIP BUS (MOCB) Target Entity Description

--

entity TARGET is

 generic (

 -- WIDTH OF ADDRESS BUS

 G_ADDR_BUS_WIDTH : natural;

 -- WIDTH OF DATA BUS

 G_DATA_BUS_WIDTH : natural;

 -- NUMBER OF EVENT SIGNALS

 G_EVENT_WIDTH : natural;

 -- WIDTH OF ADDRESS SELECT BUS

 G_ADDR_SELECT_WIDTH : natural;

 -- WIDTH OF TRANSFER SIZE BUS

 G_TRANSFER_SIZE_WIDTH : natural;

 -- WIDTH OF TRANSACTION ID BUS

 G_TID_WIDTH : natural);

 port (

--

--COMMON SIGNALS

--

-- MOCB CLOCK

MOCB_CLK : in std_logic;

-- SYNCHRONOUS RESET

MOCB_RESET : in std_logic;

--

--BASIC REQUIRED INTERFACE SIGNALS

--

-- INITIATOR DRIVEN SIGNALS

-- READ ENABLE

MOCBI_<NAME>_RD_EN : in std_logic;

-- WRITE ENABLE

MOCBI_<NAME>_WR_EN : in std_logic;

--ADDRESS BUS

MOCBI_<NAME>_ADDR : in std_logic_vector(G_ADDR_BUS_WIDTH-1 downto 0);

--DATA BUS

MOCBI_<NAME>_DATA : in std_logic_vector(G_DATA_BUS_WIDTH-1 downto 0);

--TARGET DRIVEN SIGNALS

--DATA BUS

MOCBT_<NAME>_DATA : out std_logic_vector(G_DATA_BUS_WIDTH-1 downto 0);

-- DATA BUS VALID

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 134

MOCBT_<NAME>_DATAV : out std_logic;

-- USER DEFINED EVENT LINES

MOCBT_<NAME>_EVENT : out std_logic_vector(G_EVENT_WIDTH-1 downto 0);

--

-- OPTIOINAL BASIC INTERFACE SIGNALS

--

-- BYTE ENABLE

MOCBI_<NAME>_BYTE_EN : in std_logic;

-- ADDRESS MEMORY SELECT

MOCBI_<NAME>_SEL : in std_logic_vector(G_ADDR_SEL_WIDTH-1 downto 0);

--

-- EXTENDED INTERFACE SIGNALS

--

-- INITIATOR DRIVEN SIGNALS

-- DATA ACCEPT

MOCBI_<NAME>_DATAA : in std_logic;

-- TRANSACTION ID VALID

MOCBI_<NAME>_TIDV : in std_logic;

-- TRANSACTION ID

MOCBI_<NAME>_TID : in std_logic_vector(G_TID_WIDTH-1 downto 0);

-- TRANSFER LOCKED

MOCBI_<NAME>_LOCK : in std_logic;

-- TRANSFER SIZE

MOCBI_<NAME>_SIZE : in std_logic_vector(G_TRANSFER_SIZE_WIDTH-1 downto 0);

--TARGET DRIVEN SIGNALS

-- TRANSFER SIZE VALID

MOCBI_<NAME>_SIZEV : in std_logic;

-- COMMAND ACCEPT

MOCBT_<NAME>_CMDA : out std_logic;

-- RETURN TRANSACTION ID VALID

MOCBT_<NAME>_TIDV : out std_logic;

-- RETURN TRANSACTION ID

MOCBT_<NAME>_TID : out std_logic_vector(G_TID_WIDTH-1 downto 0)

);

end entity TARGET;

D.4.1.2 Initiator Entity Description
--

-- MHAL ON CHIP BUS (MOCB) Initiator Entity Description

--

entity INITIATOR is

 generic (

-- WIDTH OF ADDRESS BUS

G_ADDR_BUS_WIDTH : natural;

-- WIDTH OF ADDRESS BUS

G_DATA_BUS_WIDTH : natural;

-- NUMBER OF EVENT SIGNALS

G_EVENT_WIDTH : natural;

-- WIDTH OF ADDRESS SELECT BUS

G_ADDR_SELECT_WIDTH : natural;

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 135

-- WIDTH OF ADDRESS SELECT BUS

G_TRANSFER_SIZE_WIDTH : natural;

-- WIDTH OF TRANSACTION ID BUS

G_Tid_WIDTH : natural);

 port (

--

--COMMON SIGNALS

--

-- MOCB CLOCK

MOCB_CLK : in std_logic;

-- SYNCHRONOUS RESET

MOCB_RESET : in std_logic;

--

--BASIC REQUIRED INTERFACE SIGNALS

--

--TARGET DRIVEN SIGNALS

-- DATA BUS

MOCBT_<NAME>_DATA : in std_logic_vector(G_DATA_BUS_WIDTH-1 downto 0);

-- DATA VALID

MOCBT_<NAME>_DATAV : in std_logic;

-- USER DEFINED EVENT LINES

MOCBT_<NAME>_EVENT : in std_logic_vector(G_EVENT_WIDTH-1 downto 0);

-- INITIATOR DRIVEN SIGNALS

-- READ ENABLE

MOCBI_<NAME>_RD_EN : out std_logic;

-- WRITE ENABLE

MOCBI_<NAME>_WR_EN : out std_logic;

-- ADDRESS BUS

MOCBI_<NAME>_ADDR : out std_logic_vector(G_ADDR_BUS_WIDTH-1 downto 0);

-- DATA BUS

MOCBI_<NAME>_DATA : out std_logic_vector(G_DATA_BUS_WIDTH-1 downto 0);

--

-- OPTIOINAL BASIC INTERFACE SIGNALS

--

-- BYTE ENABLE

MOCBI_<NAME>_BYTE_EN : out std_logic;

-- ADDRESS MEMORY SELECT

MOCBI_<NAME>_SEL : out std_logic_vector(G_ADDR_SELECT_WIDTH-1 downto 0);

--

-- EXTENDED INTERFACE SIGNALS

--

--TARGET DRIVEN SIGNALS

-- COMMAND ACCEPT

MOCBT_<NAME>_CMDA : in std_logic;

-- RETURN TRANSACTION ID VALID

MOCBT_<NAME>_TidV : in std_logic;

-- RETURN TRANSACTION ID

MOCBT_<NAME>_Tid : in std_logic_vector(G_Tid_WIDTH-1 downto 0);

-- INITIATOR DRIVEN SIGNALS

-- DATA ACCEPT

MOCBI_<NAME>_DATAA : out std_logic;

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 136

-- RETURN TRANSACTION ID VALID

MOCBI_<NAME>_TidV : out std_logic;

-- RETURN TRANSACTION ID

MOCBI_<NAME>_Tid : out std_logic_vector(G_Tid_WIDTH-1 downto 0);

-- TRANSFER LOCKED

MOCBI_<NAME>_LOCK : out std_logic;

-- TRANSFER SIZE

MOCBI_<NAME>_SIZE : out std_logic_vector(G_TRANSFER_SIZE_WIDTH-1 downto 0);

-- TRANSFER SIZE VALID

MOCBI_<NAME>_SIZEV : out std_logic

);

end entity INITIATOR;

D.4.2 Package definitions

D.4.2.1 Platform Description
package platform_pkg is

-- MOCB Platform Configuration

 -- Memory Mapping information

 constant c_<name>_pStartAddr : std_logic_vector(AddrWidth-1 downto 0) := hex value; --

Starting address of platform memory map

 constant c_<name>_pMemsize : natural := value; -- memory allocation of platform in bytes

 -- Initiator Configurations

 -- Bus Size Configuration

 constant c_<name>_iDataAdapt : boolean := value; -- Initiator Data Bus Adaption Provided

 constant c_<name>_iDataWidth : natural := value; -- Initiator Data Bus Width

 constant c_<name>_iAddrWidth : natural := value; -- Initiator Address Bus Width

 constant c_<name>_iEvents : natural := value; -- Number of Initiator accepted Event

Lines

 -- CLK Crossing Configuration

 constant c_<name>_iClkCross : boolean := value; -- Initiator Clk Crossing Provided

 constant c_<name>_iElasticDepth : natural := value; -- Depth of elastic buffer

 constant c_<name>_iMClkPeriod_num : natural := value; -- Initiator MOCB CLK Period Numerator

in ps

 constant c_<name>_iMClkPeriod_den : natural := value; -- Initiator MOCB CLK Period

Denominator in ps

 -- Supported extended feature

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 137

 constant c_<name>_iTids : boolean := value; -- Initiator Provides TIDS Support

 constant c_<name>_iTidsl : natural := value; -- Maximum Length of TIDS Transfer

 constant c_<name>_iSize : boolean := value; -- Initiator Provides Size field

 constant c_<name>_iCmdA : boolean := value; -- Initiator Utilizes Command accept

 constant c_<name>_iDataA : boolean := value; -- Initiator Utilizes Data Accept

 constant c_<name>_iLock : boolean := value; -- Initiator Provides Lock Support

 -- Interface Characteristics

 constant c_<name>_iXferMax : natural := value; -- Maximum Length of transfers

 -- Target Configuration

 -- Bus Size Configuration

 constant c_<name>_tDataAdapt : boolean := value; -- Target Data Bus Adaption Provided

 constant c_<name>_tDataWidth : natural := value; -- Target Data Bus Width

 constant c_<name>_tAddrWidth : natural := value; -- Target Address Bus Width

 constant c_<name>_tEvents : natural := value; -- Number of Target Provided Event

Lines

 -- CLK Crossing Configuration

 constant c_<name>_tClkCross : boolean := value; -- Target Clk Crossing Provided

 constant c_<name>_tElasticBuf : boolean := value; -- Elastic Buffer Used as Crossing

Technique

 constant c_<name>_tElasticDepth : natural := value; -- Depth of Elastic Buffer

 constant c_<name>_tMClkPeriod_num : natural := value; -- Target MOCB CLK Period Numerator in

ps

 constant c_<name>_tMClkPeriod_den : natural := value; -- Target MOCB CLK Period Denominator

in ps

 -- Supported extended feature

 constant c_<name>_tTids : boolean := value; -- Target Requires TIDS Support

 constant c_<name>_tSize : boolean := value; -- Target Utilizes Size Field

 constant c_<name>_tCmdA : boolean := value; -- Target Provides Command Accept

 constant c_<name>_tDataA : boolean := value; -- Target Utilizes Data Accept

 constant c_<name>_tLock : boolean := value; -- Target Provides Lock Support

 -- Interface Characteristic

 constant c_<name>_tDataVLat : natural := value; -- Target Data Valid Cycle Latency

end package platform_pkg;

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 138

D.4.2.2 Waveform Description
package waveform_pkg is

--

-- MOCB Waveform Configuration

 -- Memory Mapping information

 constant c_<name>_wStartAddr : std_logic_vector(AddrWidth-1 downto 0) := hex value; --

Starting Address of Platform Memory Map

 constant c_<name>_wMemsize : natural; -- Memory Allocation of Platform in Bytes

 -- Initiator Configurations

 -- Bus Size Configuration

 constant c_<name>_iDataAdapt : boolean := value; -- Initiator Data Bus Adaption Provided

 constant c_<name>_iDataWidth : natural := value; -- Initiator Data Bus Width

 constant c_<name>_iAddrWidth : natural := value; -- Initiator Address Bus Width

 constant c_<name>_iEvents : natural := value; -- Number of Initiator accepted Event

Lines

 -- CLK Crossing Configuration

 constant c_<name>_iClkCross : boolean := value; -- Initiator Clk Crossing Provided

 constant c_<name>_iElasticDepth : natural := value; -- Depth of elastic buffer

 constant c_<name>_iMClkPeriod_num : natural := value; -- Initiator MOCB CLK Period Numerator

in ps

 constant c_<name>_iMClkPeriod_den : natural := value; -- Initiator MOCB CLK Period

Denominator in ps

 -- Supported extended feat

 constant c_<name>_iTids : boolean := value; -- Initiator Provides TIDS Support

 constant c_<name>_iTidsl : natural := value; -- Maximum Length of TIDS Transfer

 constant c_<name>_iSize : boolean := value; -- Initiator Provides Size field

 constant c_<name>_iCmdA : boolean := value; -- Initiator Utilizes Command accept

 constant c_<name>_iDataA : boolean := value; -- Initiator Utilizes Data Accept

 constant c_<name>_iLock : boolean := value; -- Initiator Provides Lock Support

 -- Interface Characteristics

 constant c_<name>_iXferMax : natural := value; -- Maximum Length of transfers

 -- Target Configuration

 -- Bus Size Configuration

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 139

 constant c_<name>_tDataAdapt : boolean := value; -- Target Data Bus Adaption Provided

 constant c_<name>_tDataWidth : natural := value; -- Target Data Bus Width

 constant c_<name>_tAddrWidth : natural := value; -- Target Address Bus Width

 constant c_<name>_tEvents : natural := value; -- Number of Target Provided Event

Lines

 -- CLK Crossing Configuration

 constant c_<name>_tClkCross : boolean := value; -- Target Clk Crossing Provided

 constant c_<name>_tElasticBuf : boolean := value; -- Elastic Buffer Used as Crossing

Technique

 constant c_<name>_tElasticDepth : natural := value; -- Depth of Elastic Buffer

 constant c_<name>_tMClkPeriod_num : natural := value; -- Target MOCB CLK Period Numerator in

ps

 constant c_<name>_tMClkPeriod_den : natural := value; -- Target MOCB CLK Period Denominator

in ps

 -- Supported extended features

 constant c_<name>_tTids : boolean := value; -- Target Requires TIDS Support

 constant c_<name>_tSize : boolean := value; -- Target Utilizes Size Field

 constant c_<name>_tCmdA : boolean := value; -- Target Provides Command Accept

 constant c_<name>_tDataA : boolean := value; -- Target Utilizes Data Accept

 constant c_<name>_tLock : boolean := value; -- Target Provides Lock Support

 -- Interface Characteristics

 constant c_<name>_tDataVLat : natural := value; -- Target Data Valid Cycle Latency

end package waveform_pkg;

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 140

D.5 DATA TYPES AND EXCEPTIONS

None

APPENDIX D.A – ABBREVIATIONS AND ACRONYMS
See section Appendix A.A.

APPENDIX D.B – PERFORMANCE SPECIFICATION
Not applicable

APPENDIX D.C – CLOCK SPECIFICATION
Table 6 provides the clock specification for the MOCB. This information will be provided by the JTRS

Product Line developer.

Table 6 – MOCB Clock Specification

Specification Location Description

MOCB Clock Frequency *

MOCB Clock Location *

Note: (*) These values should be filled in by JTRS Product Line developers.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 141

E. MOCB RF CHAIN COORDINATOR (RFC) API EXTENSION

E.1 INTRODUCTION

This extension utilizes the Address/Data bus and Event interfaces defined in Section D.1 for specifying

memory offsets and events, which provide for coordinated control of a JTRS Communication Channel’s

RF resources. MOCB provides the ability to read and write memory-mapped interfaces resident in either

software (GPP/DSP) or hardware (FPGA), and supports event interfaces. This extension builds upon that

base to provide specific RF related Parameters (FPGA registers or software memory locations) and

Events (specific interrupt type signals within the FPGA) to support multiple RF capabilities.

This extension bears some resemblance to the MHAL RF Chain Coordinator Extension by providing RF

control functions. However, this extension uses the MOCB paradigm of Logical Destinations (LDs) and

Offsets to implement RF control functions, specifically Transmit Power Control (TPC) and Receiver

Gain, using either the existing MOCB GPP/DSP operations or the MOCB FPGA interface. Note that

additional functions can be added by defining additional LDs, parameters and event lists.

Each function is required to define a new Logical Destination (LD) that maps the beginning of the

register/memory map for that particular function. All parameters appear at offsets within that LD.

E.1.1 Overview

This document contains as follows:

a. Section E.1, Introduction, of this document contains the introductory material regarding the

Overview.

b. Section E.2, Services specifies the generic functions provided by the MOCB RFC.

c. Section E.3, Service Primitives and Attributes

d. Section E.4, Interface Definitions

e. Section E.5, Data types and Exceptions

f. Appendix E.A – Abbreviations and Acronyms

g. Appendix E.B – Performance Specification

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 142

E.2 SERVICES

This extension relies on pre-defined registers/memory-mapped locations that have a constant offset from

LDs as specified in this document. Each Function consists of the following:

 Address offset to memory (register)

 Parameter name

 Parameter symbol

 Parameter access type

 Parameter size

 Description

Every parameter has a name associated with it and carries the “RFC_” prefix. The memory offsets are

predefined integer constants relative to the LD. Each offset has a predefined parameter symbol that

would typically be implemented via #defines in a C header file or as a constant in an HDL language, such

as a VHDL package file. The memory offsets are byte addressable per the MOCB standard, however the

parameter size may be 8, 16, 32, or 64 bits.

Each parameter has a specific access type that defines the access of the memory location from the context

of the MOCB-Initiator (Device User). The MOCB-Initiator may be any type of CE (GPP, DSP, or

FPGA). The parameter memory location addresses are constant offsets defined at compile time by the

MOCB device. The memory locations can be read-only (RO) in which the MOCB-Target (Device

Provider) writes the value to memory; the MOCB-Initiator may read the memory but cannot write to it

and the Target cannot read the register. The memory locations can be write-only (WO) in which the

MOCB-Initiator writes the value to memory; the MOCB-Target may read the memory but cannot write to

it, and the Initiator cannot read the memory. The remaining type is read-write (RW) in which both the

MOCB-Initiator and Target can read or write the memory without any constraints. The benefit of

providing multiple access types is to protect against invalid data accesses and in some cases may provide

a more streamlined implementation saving on resources.

E.2.1 I/F Modules

E.2.1.1.1 Module I/O

None

E.2.1.1.2 Module Design

The function of this interface is to transfer sample data from the Initiator to the Target, so its

characteristics are hard coded and not configurable. Data bus width is num_bits, in multiples of eight

bits. Address bus width is 0 (no address bus), and the clock frequency is synchronous to the sample rate.

If a MOCB Target implements an address bus, it can be tied to ground at the inputs of the Target.

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 143

E.3 SERVICE PRIMITIVES AND ATTRIBUTES

E.3.1 Transmit Power Control Function: MOCBRFC_TPC

Modern waveforms have complex power management architectures and require precise control of the RF

power. Some of these waveforms are derived from the 3G UMTS wireless standard and part of that

standard defines a fairly complex transmit power control function, which serves multiple purposes,

primarily bandwidth and User Equipment (UE) power conservation. Such waveforms require the

transmit power to be configured at the right moment in time and at the correct accuracy. There are also

terminal constraints, such as requirements for pre-distortion of the streaming data to linearize the Power

Amplifier (PA) response, gain compensation to mitigate the compression effect when operating near

saturation, and the need to dynamically change the PA bias in order to minimize battery drain. To satisfy

such requirements, waveforms may use the MOCB RF Chain Coordinator function described in this

section. The LD is defined as MOCBRFC_TPC. The terminal defines where this LD resides. This

function specifies a table of parameters mapped to address offsets within the LD.

There is one Sync event defined for this function that synchronizes the register contents with a specific

time in the waveform process. Different waveforms may require different time values for the Sync Event,

depending on the time required by the terminal, while still providing a measure of optimization for the

waveform. Timing and threshold relationships, such as timing data writes and data reads to the Sync

event, will be specified as part of the porting process. There are multiple parameters in the API

representing data from the WF to the Terminal that is available after the Sync event and is to be applied

at a subsequent data boundary.

Since data and events for this function generally flow from the waveform to the terminal, the waveform

will be the MOCB Initiator and the terminal will be the MOCB Target.

E.3.1.1 Parameters

Offset Name Symbol Type Description Size

0x00 RFC_AvailPower AVAILPWR RO Available power from terminal

(dBm unsigned)

2

0x02 RFC_Status STATUS WO Frame Status indicators 2

0x04 RFC_TPC_BasePower TPCBASEPWR WO Power delta (dBm signed) 2

0x06 RFC_TPC_PwrRatio TPCPWRRAT WO Digital power ratio to control

signal (dB unsigned)

2

0x08 RFC_PercentNotch PCTNOTCH WO Percent of the signal bandwidth

notched

2

0x0A RFC_WSD WSD WO Waveform-specific data 2

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 144

E.3.1.2 Events

Vector

Bit

Name Type Description Size

0
RFC_Sync Event An event that occurs prior to power settings

configuration and state change

N/A

E.3.2 Rx Gain Function: MOCBRFC_RXGAIN

This function provides the terminal receiver gain to the waveform when the external/terminal gain

changes so that the waveform can calculate the received absolute power level. This is necessary to

configure the user services appropriately and change various waveform settings to obtain the best

performance.

The extension defines the general parameters for this function. The LD constant for this function is

MOCBRFC_RXGAIN. The terminal will define where this LD will reside. In addition to the Gain

parameter, a RFC_GainReduced boolean indicates whether the reported Gain is attenuated more than a

fixed threshold level. Timing and threshold relationships, including the frequency/timing of gain

reporting and the fixed threshold level of the RFC_GainReduced boolean, will be specified as part of the

porting process.

E.3.2.1 Parameters

Offset Name Symbol Type Description Size

0x00 RFC_Gain RXGAIN RO Measured Receiver Gain – Nominal

value with no attenuation. Units in

dBm/lsb^2.

2

0x02 RFC_GainReduced RXGAIN

RDCT

RO Boolean – Indicates TRUE (0x1) if the

RXGAIN value is attenuated beyond a

fixed threshold level from nominal,

otherwise FALSE (0x0).

1

0x03 RFC_Reserved RSVD n/a (future use) 1

E.3.2.2 Events

Vector

Bit

Name Type Description Size

0
RFC_GainUpdated Event An event indicating that the gain value has been

updated.

N/A

MHAL on Chip Bus API Version: 1.1.5

 26 June 2013

Statement A - Approved for public release; distribution is unlimited (17 July 2013). 145

E.4 INTERFACE DEFINITIONS

None

E.5 DATA TYPES AND EXCEPTIONS

Not applicable

APPENDIX E.A – ABBREVIATIONS AND ACRONYMS
See section Appendix A.A.

APPENDIX E.B – PERFORMANCE SPECIFICATION
Not applicable

	A. MOCB
	A.1 Introduction
	A.1.1 Overview
	A.1.2 Service Layer Description
	A.1.3 Referenced Documents
	A.1.3.1 Government Documents
	A.1.3.1.1 Specifications
	A.1.3.1.1.1 Federal Specifications
	A.1.3.1.1.2 Military Specifications
	A.1.3.1.1.3 Other Government Agency Documents

	A.2 Services
	A.2.1 General Assumptions
	A.2.2 Logical Destination (LD) Assumptions

	A.3 Service Primitives and Attributes
	A.4 Interface Definitions
	A.5 Data Types and Exceptions
	Appendix A.A – Abbreviations and Acronyms
	Appendix A.B – Performance Specification

	B. MOCB GPP API Extension
	B.1 Introduction
	B.1.1 Overview
	B.1.2 Service Layer Description
	B.1.2.1 MOCB Port Connections

	B.1.3 Modes of Service
	B.1.4 Service States
	B.1.4.1 MOCB State Diagram

	B.1.5 Referenced Documents
	B.1.5.1 Government Documents
	B.1.5.1.1 Specifications
	B.1.5.1.1.1 Federal Specifications
	B.1.5.1.1.2 Military Specifications
	B.1.5.1.1.3 Other Government Agency Documents

	B.2 Services
	B.2.1 Provide Services
	B.2.2 Use Services
	B.2.3 Interface Modules
	B.2.3.1 MHAL::MOCB
	B.2.3.1.1 GPPMemoryAccessConsumer Interface Description
	B.2.3.1.2 GPPEvent Interface Description

	B.2.4 Sequence Diagrams

	B.3 Service Primitives and Attributes
	B.3.1 MHAL::MOCB::GPPMemoryAccessConsumer
	B.3.1.1 read Operation
	B.3.1.1.1 Synopsis
	B.3.1.1.2 Parameters
	B.3.1.1.3 State
	B.3.1.1.4 New State
	B.3.1.1.5 Return Value
	B.3.1.1.6 Originator
	B.3.1.1.7 Exceptions

	B.3.1.2 readWait Operation
	B.3.1.2.1 Synopsis
	B.3.1.2.2 Parameters
	B.3.1.2.3 State
	B.3.1.2.4 New State
	B.3.1.2.5 Return Value
	B.3.1.2.6 Originator
	B.3.1.2.7 Exceptions

	B.3.1.3 multiReadWait Operation
	B.3.1.3.1 Synopsis
	B.3.1.3.2 Parameters
	B.3.1.3.3 State
	B.3.1.3.4 New State
	B.3.1.3.5 Return Value
	B.3.1.3.6 Originator
	B.3.1.3.7 Exceptions

	B.3.1.4 multiLDReadWait Operation
	B.3.1.4.1 Synopsis
	B.3.1.4.2 Parameters
	B.3.1.4.3 State
	B.3.1.4.4 New State
	B.3.1.4.5 Return Value
	B.3.1.4.6 Originator
	B.3.1.4.7 Exceptions

	B.3.1.5 write Operation
	B.3.1.5.1 Synopsis
	B.3.1.5.2 Parameters
	B.3.1.5.3 State
	B.3.1.5.4 New State
	B.3.1.5.5 Return Value
	B.3.1.5.6 Originator
	B.3.1.5.7 Exceptions

	B.3.1.6 writeWait Operation
	B.3.1.6.1 Synopsis
	B.3.1.6.2 Parameters
	B.3.1.6.3 State
	B.3.1.6.4 New State
	B.3.1.6.5 Return Value
	B.3.1.6.6 Originator
	B.3.1.6.7 Exceptions

	B.3.1.7 multiWriteWait Operation
	B.3.1.7.1 Synopsis
	B.3.1.7.2 Parameters
	B.3.1.7.3 State
	B.3.1.7.4 New State
	B.3.1.7.5 Return Value
	B.3.1.7.6 Originator
	B.3.1.7.7 Exceptions

	B.3.1.8 multiLDWriteWait Operation
	B.3.1.8.1 Synopsis
	B.3.1.8.2 Parameters
	B.3.1.8.3 State
	B.3.1.8.4 New State
	B.3.1.8.5 Return Value
	B.3.1.8.6 Originator
	B.3.1.8.7 Exceptions

	B.3.1.9 modify Operation
	B.3.1.9.1 Synopsis
	B.3.1.9.2 Parameters
	B.3.1.9.3 State
	B.3.1.9.4 New State
	B.3.1.9.5 Return Value
	B.3.1.9.6 Originator
	B.3.1.9.7 Exceptions

	B.3.1.10 modifyWait Operation
	B.3.1.10.1 Synopsis
	B.3.1.10.2 Parameters
	B.3.1.10.3 State
	B.3.1.10.4 New State
	B.3.1.10.5 Return Value
	B.3.1.10.6 Originator
	B.3.1.10.7 Exceptions

	B.3.1.11 configLDMap Operation
	B.3.1.11.1 Synopsis
	B.3.1.11.2 Parameters
	B.3.1.11.3 State
	B.3.1.11.4 New State
	B.3.1.11.5 Return Value
	B.3.1.11.6 Originator
	B.3.1.11.7 Exceptions

	B.3.2 MHAL::MOCB::GPPEvent
	B.3.2.1 registerSemaphore Operation
	B.3.2.1.1 Synopsis
	B.3.2.1.2 Parameters
	B.3.2.1.3 State
	B.3.2.1.4 New State
	B.3.2.1.5 Return Value
	B.3.2.1.6 Originator
	B.3.2.1.7 Exceptions

	B.3.2.2 unregisterSemaphore Operation
	B.3.2.2.1 Synopsis
	B.3.2.2.2 Parameters
	B.3.2.2.3 State
	B.3.2.2.4 New State
	B.3.2.2.5 Return Value
	B.3.2.2.6 Originator
	B.3.2.2.7 Exceptions

	B.3.2.3 registerEventMux Operation
	B.3.2.3.1 Synopsis
	B.3.2.3.2 Parameters
	B.3.2.3.3 State
	B.3.2.3.4 New State
	B.3.2.3.5 Return Value
	B.3.2.3.6 Originator
	B.3.2.3.7 Exceptions

	B.4 IDL
	B.4.1 MOCB Device IDL

	B.5 UML
	B.5.1 Data Types
	B.5.1.1 MultiRead
	B.5.1.2 MultiLDRead
	B.5.1.3 MultiWrite
	B.5.1.4 MultiLDWrite
	B.5.1.5 Map

	B.5.2 Enumerations
	B.5.2.1 AddressIndexType
	B.5.2.2 ErrorCodes
	B.5.2.3 BitOp

	B.5.3 Exceptions
	B.5.4 Structures
	B.5.4.1 MultiReadEntry
	B.5.4.2 MultiLDReadEntry
	B.5.4.3 MultiWriteEntry
	B.5.4.4 MultiLDWriteEntry
	B.5.4.5 MapEntry
	Appendix B.A – Abbreviations and Acronyms
	Appendix B.B – Performance Specification

	C. MOCB DSP API Extension
	C.1 Introduction
	C.1.1 Overview
	C.1.2 Service Layer Description
	C.1.3 Referenced Documents
	C.1.3.1.1 Government Documents
	C.1.3.1.1.1 Specifications
	C.1.3.1.1.1.1 Federal Specifications
	C.1.3.1.1.1.2 Military Specifications
	C.1.3.1.1.1.3 Other Government Agency Documents

	C.2 Services
	C.2.1 Interface Modules
	C.2.1.1 MOCB DSP Memory Access Consumer Interface Description
	C.2.1.1.1 MOCB DSP Event Interface Description

	C.2.2 Sequence Diagrams

	C.3 Service Primitives and Attributes
	C.3.1 DSPMemoryAccessConsumer
	C.3.1.1 mocbRead Operation
	C.3.1.1.1 Synopsis
	C.3.1.1.2 Parameters
	C.3.1.1.3 State
	C.3.1.1.4 New State
	C.3.1.1.5 Return Value
	C.3.1.1.6 Originator
	C.3.1.1.7 Exceptions

	C.3.1.2 readWait Operation
	C.3.1.2.1 Synopsis
	C.3.1.2.2 Parameters
	C.3.1.2.3 State
	C.3.1.2.4 New State
	C.3.1.2.5 Return Value
	C.3.1.2.6 Originator
	C.3.1.2.7 Exceptions

	C.3.1.3 multiReadWait Operation
	C.3.1.3.1 Synopsis
	C.3.1.3.2 Parameters
	C.3.1.3.3 State
	C.3.1.3.4 New State
	C.3.1.3.5 Return Value
	C.3.1.3.6 Originator
	C.3.1.3.7 Exceptions

	C.3.1.4 multiLDReadWait Operation
	C.3.1.4.1 Synopsis
	C.3.1.4.2 Parameters
	C.3.1.4.3 State
	C.3.1.4.4 New State
	C.3.1.4.5 Return Value
	C.3.1.4.6 Originator
	C.3.1.4.7 Exceptions

	C.3.1.5 mocbWrite Operation
	C.3.1.5.1 Synopsis
	C.3.1.5.2 Parameters
	C.3.1.5.3 State
	C.3.1.5.4 New State
	C.3.1.5.5 Return Value
	C.3.1.5.6 Originator
	C.3.1.5.7 Exceptions

	C.3.1.6 writeWait Operation
	C.3.1.6.1 Synopsis
	C.3.1.6.2 Parameters
	C.3.1.6.3 State
	C.3.1.6.4 New State
	C.3.1.6.5 Return Value
	C.3.1.6.6 Originator
	C.3.1.6.7 Exceptions

	C.3.1.7 multiWriteWait Operation
	C.3.1.7.1 Synopsis
	C.3.1.7.2 Parameters
	C.3.1.7.3 State
	C.3.1.7.4 New State
	C.3.1.7.5 Return Value
	C.3.1.7.6 Originator
	C.3.1.7.7 Exceptions

	C.3.1.8 multiLDWriteWait Operation
	C.3.1.8.1 Synopsis
	C.3.1.8.2 Parameters
	C.3.1.8.3 State
	C.3.1.8.4 New State
	C.3.1.8.5 Return Value
	C.3.1.8.6 Originator
	C.3.1.8.7 Exceptions

	C.3.1.9 modify Operation
	C.3.1.9.1 Synopsis
	C.3.1.9.2 Parameters
	C.3.1.9.3 State
	C.3.1.9.4 New State
	C.3.1.9.5 Return Value
	C.3.1.9.6 Originator
	C.3.1.9.7 Exceptions

	C.3.1.10 modifyWait Operation
	C.3.1.10.1 Synopsis
	C.3.1.10.2 Parameters
	C.3.1.10.3 State
	C.3.1.10.4 New State
	C.3.1.10.5 Return Value
	C.3.1.10.6 Originator
	C.3.1.10.7 Exceptions

	C.3.1.11 configLDMap Operation
	C.3.1.11.1 Synopsis
	C.3.1.11.2 Parameters
	C.3.1.11.3 State
	C.3.1.11.4 New State
	C.3.1.11.5 Return Value
	C.3.1.11.6 Originator
	C.3.1.11.7 Exceptions

	C.3.2 DSPEvent
	C.3.2.1 registerSemaphore Operation
	C.3.2.1.1 Synopsis
	C.3.2.1.2 Parameters
	C.3.2.1.3 State
	C.3.2.1.4 New State
	C.3.2.1.5 Return Value
	C.3.2.1.6 Originator
	C.3.2.1.7 Exceptions

	C.3.2.2 unregisterSemaphore Operation
	C.3.2.2.1 Synopsis
	C.3.2.2.2 Parameters
	C.3.2.2.3 State
	C.3.2.2.4 New State
	C.3.2.2.5 Return Value
	C.3.2.2.6 Originator
	C.3.2.2.7 Exceptions

	C.3.2.3 registerEventMux Operation
	C.3.2.3.1 Synopsis
	C.3.2.3.2 Parameters
	C.3.2.3.3 State
	C.3.2.3.4 New State
	C.3.2.3.5 Return Value
	C.3.2.3.6 Originator
	C.3.2.3.7 Exceptions

	C.4 Interface Definitions
	C.5 Data Types and Exceptions
	C.5.1 Data Types
	C.5.2 Macros
	C.5.2.1 MOCBAddressIndexType
	C.5.2.2 MOCBErrorCodes
	C.5.2.3 MOCBBitOp

	C.5.3 Exceptions
	C.5.4 Structures
	C.5.4.1 MOCBMemoryDescriptor
	C.5.4.2 MOCBMultiReadEntry
	C.5.4.3 MOCBMultiLDReadEntry
	C.5.4.4 MOCBMultiWriteEntry
	C.5.4.5 MOCBMultiLDWriteEntry
	C.5.4.6 MOCBMapEntry
	Appendix C.A – Abbreviations and Acronyms
	Appendix C.B – Performance Specification

	D. MOCB FPGA API Extension
	D.1 Introduction
	D.1.1 Overview
	D.1.2 Service Layer Description
	D.1.2.1 MOCB FPGA Signals
	D.1.2.1.1 FPGA Signals Naming Convention
	D.1.2.1.2 MOCB FPGA Best Design Practice Implementation
	D.1.2.1.3 Basic MOCB FPGA Signals
	D.1.2.1.4 Basic MOCB FPGA Signals (Optional)
	D.1.2.1.5 Extended MOCB PFGA Signals

	D.1.2.2 Data and Control Flow
	D.1.2.3 MOCB Configuration Package
	D.1.2.3.1 MOCB Memory Map Configuration
	D.1.2.3.2 Initiator Configurations
	D.1.2.3.2.1 Bus Configuration
	D.1.2.3.2.1.1 Initiator Event Bus Configuration

	D.1.2.3.2.2 Clock Crossing Configuration
	D.1.2.3.2.2.1 Clock Crossing provided
	D.1.2.3.2.2.2 Clock Crossing Elastic Buffer
	D.1.2.3.2.2.3 Initiator MOCB Clock Period

	D.1.2.3.2.3 Initiator Supported Extended Feature
	D.1.2.3.2.3.1 Initiator Transaction IDs Support
	D.1.2.3.2.3.2 Initiator Maximum Transaction Transfer Depth
	D.1.2.3.2.3.3 Initiator Transfer Size
	D.1.2.3.2.3.4 Initiator Command Accept Support
	D.1.2.3.2.3.5 Initiator Data Accept Support
	D.1.2.3.2.3.6 Initiator Lock Support

	D.1.2.3.3 Target Configuration
	D.1.2.3.3.1 Target Event Bus Configuration

	D.1.2.3.4 Target Clock Crossing Configuration
	D.1.2.3.4.1 Clock Crossing provided
	D.1.2.3.4.2 Target Clock Crossing Elastic Buffer
	D.1.2.3.4.3 Target MOCB Clock Period

	D.1.2.3.5 Target Supported Extended Feature
	D.1.2.3.5.1 Target Transaction IDs Support
	D.1.2.3.5.2 Target Transfer Size
	D.1.2.3.5.3 Target Command Accept Support
	D.1.2.3.5.4 Target Data Accept Support
	D.1.2.3.5.5 Target Lock Support
	D.1.2.3.5.6 Target Data Valid Latency

	D.1.2.4 Translation Layer
	D.1.2.5 MOCB FPGA Timing
	D.1.2.5.1 Basic burst Write, no flow control, No Tids, No Lock, No Size
	D.1.2.5.2 Basic burst Write with Size, no flow control, No Tids, No Lock
	D.1.2.5.3 Basic Read with no flow control, No Tids, No Lock
	D.1.2.5.4 Basic Read with Return Data Flow Control, No Tids, No Lock
	D.1.2.5.5 Write Command with Command Flow control, No Tids, No Lock
	D.1.2.5.6 Read /Write Command with Access control and Lock, No Tids
	D.1.2.5.7 Write/Read Command with Access control and Tids, No Lock

	D.1.3 Referenced Documents
	D.1.3.1 Government Documents
	D.1.3.1.1 Specifications
	D.1.3.1.1.1 Federal Specifications
	D.1.3.1.1.2 Military Specifications
	D.1.3.1.1.3 Other Government Agency Documents

	D.2 Services
	D.3 Service Primitives and Attributes
	D.4 Definitions
	D.4.1 Entity Definitions
	D.4.1.1 Target Entity Description
	D.4.1.2 Initiator Entity Description

	D.4.2 Package definitions
	D.4.2.1 Platform Description
	D.4.2.2 Waveform Description

	D.5 Data Types and Exceptions
	Appendix D.A – Abbreviations and Acronyms
	Appendix D.B – Performance Specification
	Appendix D.C – Clock Specification

	E. MOCB RF Chain Coordinator (RFC) API Extension
	E.1 Introduction
	E.1.1 Overview

	E.2 Services
	E.2.1 I/F Modules
	E.2.1.1.1 Module I/O
	E.2.1.1.2 Module Design

	E.3 Service Primitives and Attributes
	E.3.1 Transmit Power Control Function: MOCBRFC_TPC
	E.3.1.1 Parameters
	E.3.1.2 Events

	E.3.2 Rx Gain Function: MOCBRFC_RXGAIN
	E.3.2.1 Parameters
	E.3.2.2 Events

	E.4 Interface Definitions
	E.5 Data types and Exceptions
	Appendix E.A – Abbreviations and Acronyms
	Appendix E.B – Performance Specification

